Windows 7

Основные технологии при изготовлении жк дисплеев. Перспективные технологии дисплеев

Еще не так давно на рабочих столах пользователей большое место занимали мониторы с электронно-лучевой трубкой. , а тем более смартфоны, только начали появляться на полках магазинов. Прошло не так много времени, и громоздкие ЭЛТ-мониторы начали сменять первые жидкокристаллические дисплеи, а карманы наполняли разного рода гаджеты, в которых необходимым атрибутом был экран.

Со временем экраны стали не только прибавлять в диагонали, но также менялась технология работы дисплея, и в характеристиках к устройствам мы все чаще начали замечать такие непонятные аббревиатуры как TN, TN-Film, IPS, Amoled и т.д.

Данная статья была написана для обычных потребителей, которые хотят выбрать себе монитор, смартфон или планшет. Поэтому здесь не будет множества терминов и глубокого внедрения в ту или иную технологию, а будет описана работа экранов доступным языком, понятным рядовому пользователю. Я надеюсь, данная статья прольет свет на новые технологии в области отображения информации, а также поможет людям в дальнейшем выборе устройства, которым будет приятно пользоваться.

LCD (Liquid crystal display), он же ЖКД (жидкокристаллический дисплей), построен на основе жидких кристаллов, которые меняют свое расположение при подаче на них напряжения. Если внимательно присмотреться к монитору, то можно заметить, что он состоит из маленьких точек – пикселей. Это и есть жидкие кристаллы. В свою очередь каждый пиксель состоит из красного, синего и зеленого субпикселей. При подаче напряжения субпиксели выстраиваются в определенном порядке и пропускают через себя свет, таким образом формируя пиксель определенного цвета.


Из большого количества таких пикселей и формируется изображение на экране монитора или другого устройства.

TN и TN+Film матрицы

Первые массовые мониторы оснащались матрицами TN. Это самый простой, но в то же время не самый качественный тип матрицы. Данная технология базируется на том, что при отсутствии напряжения субпиксели пропускают через себя свет, образуя на экране белую точку. При подаче напряжения на субпиксели, они выстраиваются в определенном порядке, образуя собой пиксель заданного цвета.

Из-за того, что стандартный цвет пикселя, при отсутствии напряжения, белый, данный тип матриц обладает не самой лучшей цветопередачей. Цвета отображаются более тускло и блекло, а черный цвет выглядит скорее темно-серым.


Еще одним главным недостатком TN матрицы являются малые углы обзора. Частично с данной проблемой попытались справиться улучшением технологии TN до TN+Film, с помощью дополнительного слоя, нанесенного на экран. Углы обзора стали больше, но все равно оставались далеки от идеала. В данный момент TN+Film матрицы полностью заменили TN.

Но, кроме недостатков, в таких матрицах есть и свои достоинства. К ним принадлежит малое время отклика и относительно недорогая себестоимость.

Учитывая все достоинства и недостатки, можно сказать, что если вам необходим недорогой монитор для периодического использования в работе с документами или для серфинга в интернете, то мониторы с TN+Film матрицами отлично подойдут для данных нужд.

IPS матрицы

Главным отличием от технологии IPS от TN является расположение субпикселей при отсутствии напряжения. Они располагаются перпендикулярно друг к другу, образуя черную точку. Таким образом, в состоянии спокойствия экран остается черным. Это дает преимущество в цветопередаче перед экранами с TN матрицами. Цвета на экране выглядят ярко, сочно, а черный цвет остается действительно черным. При подаче напряжения пиксели меняют свой цвет. Принимая эту особенность во внимание, владельцам смартфонов и планшетов с IPS-экранами можно посоветовать использовать темные цветовые схемы и обои на рабочем столе, тогда смартфон от аккумулятора будет работать немного дольше.

Также приятной особенностью IPS матриц являются большие углы обзора. В большинстве экранов они составляют 178°. Для мониторов, а особенно для смартфонов и планшетов эта особенность является важной при выборе пользователем девайса.

Но, естественно, присутствуют и недостатки. Главным недостатком является большее время отклика экрана. Это влияет на отображение в динамических картинках, таких как игры и фильмы. В современных IPS панелях было улучшено время отклика, так что теперь этот недостаток не является столь критичным.

Еще одной особенностью IPS-экранов является их большая стоимость по сравнению с TN. Но в последнее время цена на IPS-панели снизилась и стала доступна большинству пользователей.

Таким образом, телефоны и планшеты лучше выбирать с IPS-матрицами, и тогда от использования устройства пользователь будет получать огромное эстетическое удовольствие. Матрица для монитора не является столь критичной, но при возможности рекомендуется обратить внимание на современные IPS-мониторы.

AMOLED-экраны

В последние несколько лет смартфоны начали оснащать AMOLED-дисплеями и при этом очень рекламировать такие телефоны покупателям. Так давайте разберемся, что нам пытаются донести пиар-менеджеры компаний, а что в их словах обычный рекламный трюк.

Технология создания AMOLED-матриц основана на активных светодиодах, которые начинают светиться и отображать цвет при подаче на них напряжения. Что это нам дает? А дает нам это довольно противоречивые особенности.
Начнем с цветопередачи. Насыщенность и контрастность таких экранов зашкаливают. Цвета отображаются настолько ярко, что у некоторых пользователей могут уставать глаза при продолжительной работе со своим смартфоном. Зато черный цвет отображается еще более черным, чем даже в IPS-матрицах.


Такие яркие цвета очень влияют на энергопотребление дисплея. Так же как и в IPS, отображение черного цвета требует меньше энергии, чем отображение определенного цвета, и тем более белого. Но разница в энергопотреблении между отображением черного и белого цвета в AMOLED-экранах намного больше. Для отображения белого цвета необходимо в несколько раз больше энергии, чем для отображения черного.

Еще одной негативной особенностью является «память картинки». При продолжительном выводе статического изображения могут оставаться следы на экране, а это в свою очередь сказывается на качестве отображения информации.

Также из-за своей довольно высокой стоимости AMOLED-экраны пока используются только в смартфонах. Мониторы, построенные на такой технологии, стоят неоправданно дорого.

Заключение

В завершении статьи хотелось бы сказать, что восприятие изображения довольно субъективное для каждого пользователя. Для кого-то и TN матрицы будет вполне достаточно, а кто-то будет менять десятки мониторов, пока не найдет свой идеал. Таким образом, несмотря на все технологии создания дисплеев, выбор всегда остается за пользователем и зависит от его индивидуального восприятия картинки на экране. А как работают экраны в режиме сенсорного ввода, вы можете прочитать .

При подготовке тестирования ЖК-мониторов с диагональю 19 дюймов мы столкнулись с необычайно высоким интересом к данной теме. Проблема выбора, которая никогда не была легкой, в данном случае усугубляется большим разнообразием моделей, цена которых лежит в широких пределах – от $300 до $800 при сравнимых (на первый взгляд) характеристиках. Для того чтобы понять, чем же они отличаются между собой и какой продукт предпочесть, нам предстоит рассмотреть устройство современного ЖК-дисплея.

Мы не будем подробно останавливаться на базовых принципах функционирования ЖК-матриц, полагая, что большинство наших читателей уже знакомо с ними в достаточной степени. лишь, что в них используется явление поворота жидкими кристаллами плоскости поляризации светового потока. Но технологии и подходы, применяемые различными производителями к решению возникающих при создании мониторов проблем, подчас значительно отличаются.

В наследство от эпохи ЭЛТ-мониторов нам остался аналоговый интерфейс RGB VGA D-sub. Видеоадаптер преобразует данные кадрового буфера из цифрового вида в аналоговый, а электроника ЖК-монитора, со своей стороны, вынуждена выполнять обратное, аналого-цифровое преобразование. Несложно понять, что такие избыточные операции как минимум не улучшают качества изображения, к тому же они требуют дополнительных затрат для своей реализации. Поэтому с повсеместным распространением ЖК-дисплеев интерфейс VGA D-sub не имеет будущего и в скором времени его вытеснит цифровой DVI.

Не стоит думать, что в дешевых мониторах производители намеренно не реализуют поддержку DVI-интерфейса, ограничиваясь лишь VGA D-sub. Просто для этого требуется применение специального TMDS-приемника со стороны монитора, и себестоимость устройства с поддержкой как аналогового, так и цифрового интерфейсов по сравнению с вариантом с единственным аналоговым входом будет выше.

Электроника

Если разобрать корпус современного ЖК-монитора и взглянуть на плату управляющей электроники, поначалу может возникнуть легкое недоумение. В самом деле, даже плата блока питания, расположенная рядом, выглядит гораздо внушительнее!

Функциональную схему блока обработки изображения в ЖК-дисплее простой не назовешь, и лаконичность его платы объясняется иначе: благодаря подходу System-on-a-Chip большинство функций (от аналого-цифрового преобразования RGB-сигнала, его масштабирования, обработки и вплоть до формирования выходных сигналов LVDS) выполняется единственной ИС с высокой степенью интеграции, носящей название Display Engine. Среди производителей мониторов сегодня весьма популярны ИС от ST Microelectronics (семейства ADE3xxx), работающие под управлением 8-битовых микроконтроллеров.

Блок ЖК-матрицы также выглядит довольно простым, и его плата обычно содержит единственную схему управления, так называемый драйвер матрицы, в который интегрированы приемник LVDS и драйверы истоков и затворов, преобразующие видеосигнал в адресацию конкретных пикселов по столбцам и строкам. В целом же доля электронных компонентов в себестоимости монитора, по оценкам экспертов IDC, составляет всего 11% – нетрудно догадаться, что большинство затрат приходится на саму панель TFT LCD.

В блок ЖК-матрицы входит также система ее подсветки, которая, за редкими исключениями, выполнена на газоразрядных лампах с холодным катодом (Cold Cathode Fluorescent Lamp, CCFL). Высокое напряжение для них обеспечивает инвертор, размещенный в блоке питания монитора. Лампы обычно располагаются сверху и снизу, их излучение направлено в торец полупрозрачной панели, находящейся сзади за матрицей и выполняющей роль световода. От качества матирования и однородности материала этой панели зависит такая важная характеристика, как равномерность подсветки матрицы.

Современные технологии TFT LCD

Для ЖК-мониторов основным элементом, определяющим качество изображения, является матрица TFT LCD. На сегодняшний день на рынке представлены три конкурирующие между собой базовые технологии ЖК-панелей и некоторое количество их разновидностей. Это Twisted Nematics (TN, раньше добавляли еще и +Film, однако сейчас других просто нет), In-Plane Shutter (IPS, S-IPS) и Vertical Alignment (VA, MVA, PVA). Не затрагивая технических особенностей данных технологий, которые широко обсуждаются на соответствующих технических сайтах в Интернете, остановимся лишь на их практических и рыночных аспектах.

a
б
в

ИС высокой интеграции (Display engine) семейства ADE3xxx от ST Microelectronics (a) под управлением восьмиразрядного микроконтроллера (б) и формирователи выходного сигнала (в) – вот и все устройства на плате управления ЖК-дисплеем

TN. Самый старый и дешевый в производстве тип матриц, для него же характерно минимальное время отклика, что и обусловило его широкое распространение. Большинство 17-дюймовых дисплеев и до 50% 19-дюймовых содержат именно матрицы TN. На этом, пожалуй, достоинства заканчиваются, и начинается длинный список недостатков.

Специфическая, «жесткая» цветопередача, весьма далекая от эталонной (а с появлением «сверхбыстрых» панелей она еще ухудшилась); клиппинг в светлых областях изображения; малые углы обзора, особенно вертикальный; невысокая контрастность. К тому же «битые» пикселы (dead pixels) на таких матрицах пропускают свет, поэтому на экране они будут видны в виде яркой синей, красной или зеленой точки.

Но все же, если вам нужен монитор с минимальным смазыванием движущегося изображения, пока именно TN остается наилучшим выбором. Однако не стоит забывать, что при этом он совершенно не подойдет для работы с графикой.

Узнать такие матрицы довольно легко по потемнению картинки при взгляде снизу и выцветанию, вплоть до инвертирования светлых областей при взгляде сверху.

IPS/S-IPS. Характеристики матриц, выполненных по данной технологии (разработанной компанией Hitachi), являют собой прямую противоположность таковым для TN. IPS имеет впечатляющий список достоинств. Это и отличная цветопередача, и широчайшие углы обзора, и хороший контраст (глубокий черный цвет). Но преуспеванию IPS на рынке мешают ее недостатки: сложность в производстве (как следствие, дороговизна) и большое время реакции матрицы.

IPS может быть идеальным выбором для задач, связанных с обработкой статического изображения. А вот комфортно играть в компьютерные игры, увы, не получится. Кроме того, на рынке до сих пор нет IPS-матриц с технологией overdrive (подробнее о ней ниже), поэтому мониторы с такими матрицами выбирают преимущественно профессионалы в области графики.

Узнать матрицы IPS также легко: если взглянуть под углом на включенный монитор с черной заливкой на экране, то черный цвет будет иметь фиолетовый оттенок.

MVA/PVA. Технология MVA (Multi-domain Vertical Alignment) разработана компанией Fujitsu в качестве компромиссной между IPS и TN. Достоинства таких матриц: отличные углы обзора, неплохая цветопередача, высокая контрастность; однако время отклика по-прежнему не может сравниться с соответствующим показателем у TN.

Samsung производит матрицы PVA (Pattern Vertical Alignment) и S-PVA, которые, грубо говоря, являются усовершенствованными вариантами MVA. Корейской компании удалось значительно улучшить контрастность, вплоть до рекордной 1000:1, а также с помощью технологии overdrive серьезно уменьшить время отклика – теперь на топовых моделях 19-дюймовых мониторов этого производителя вполне можно комфортно играть в динамичные компьютерные игры.

Если обобщить весь опыт тестирования ЖК-мониторов в нашей Тестовой лаборатории, то именно PVA-матрицы на сегодняшний день видятся нам как оптимальный компромисс между малым временем отклика TN и качественной цветопередачей IPS. Поэтому дисплеи, оборудованные такими матрицами, могут в наибольшей степени претендовать на звание универсальных.

Чем определяется качество

После рассмотрения достоинств и недостатков применяемых в ЖК-дисплеях технологий изготовления матриц у вас может возникнуть совершенно закономерный вопрос: если качество изображения на 80% зависит от матрицы, почему же цены на схожие мониторы разных брендов подчас отличаются в несколько раз?

Даже если оставить за рамками качество сборки и материал корпуса, а также конструкцию подставки и возможности настройки параметров изображения, останется такой животрепещущий вопрос, как политика производителя по отношению к «битым» пикселам. Последние представляют собой ячейки, управляющие тонкопленочные транзисторы которых вышли из строя. Обычно это вызвано производственным дефектом, так как сделать идеальную панель большой диагонали с тремя миллионами ячеек совсем не просто, в ходе же эксплуатации монитора новые дефекты появляются редко.

Стандарт ISO 13406-2 определяет четыре класса ЖК-панелей, для каждого из которых допускается наличие определенного количества неработающих ячеек на миллион пикселов. Для массового распространения на данный момент сертифицированы лишь матрицы первого («битые» субпикселы отсутствуют) и второго классов (количество вышедших из строя субпикселов не больше пяти). Однако ввиду непрекращающегося падения цен держать такую планку качества производителям все труднее: слишком много панелей уходит в брак, а работать в убыток в условиях демпинга долго не получится. Поэтому если тенденция к удешевлению ЖК-дисплеев сохранится и в будущем, то совсем не исключено появление на рынке и панелей третьего класса (от 6 до 50 вышедших из строя субпикселов).

Кто-то может спросить: а как же те производители, которые гарантируют, что «битых» пикселов в их мониторах нет? Они что, научились делать ЖК-панели практически без брака? Нет, здесь все гораздо проще. Гарантия на полное отсутствие вышедших из строя субпикселов обычно дается лишь на отдельные модели мониторов (вершины продуктовых линеек) и свидетельствует о применении панелей первого класса. Второй же класс просто устанавливают в более дешевые модели линейки. Кроме того, такую гарантию на свои дисплеи могут безбоязненно давать прежде всего те бренды, которые делают ЖК-панели и для себя, так как при этом они имеют возможность отобрать для собственных устройств самые качественные из них: Samsung, LG и Philips.

Таким образом, на пресловутый вопрос «навіщо платити більше?» применительно к ЖК-мониторам имеется совершенно четкий ответ. Как говорил М. Жванецкий, можно этого и не делать, если вас не интересует результат – в нашем случае качество приобретаемого устройства.

Не все спецификации одинаково полезны

Если взглянуть на страницу спецификаций ЖК-дисплея любого производителя, то список его технических характеристик обычно выглядит весьма внушительно. Для потенциальных покупателей зачастую именно спецификации являются единственным источником информации о продукте, и поэтому в народе довольно популярно сравнение характеристик устройств различных брендов. Тем не менее такой подход к ЖК-мониторам, к сожалению, совершенно неприменим – делать выводы о качестве, сравнивая спецификации, корректно лишь для продуктов одной компании (да и то не всегда).

Такая ситуация с, казалось бы, вполне объективными показателями, изначально призванными вносить ясность, требует дополнительного рассмотрения. Для начала отметим, что, хотя стандарт VESA на измерения параметров плоскопанельных дисплеев определяет их методику однозначно, далеко не все производители ее придерживаются. Более того, когда дело доходит до наиболее критичных с маркетинговой точки зрения пунктов спецификации, с методами и условиями их измерений зачастую начинается самый настоящий бардак.

Попробуем разобраться, какие же из характеристик ЖК-дисплея наиболее важны и стоят того, чтобы при выборе обратить на них внимание.

а
б
в
г

Блок подсветки (а) состоит из газоразрядных ламп с холодным катодом CCFL (б), полимерного световода (в), рассеивателей и поляризатора (г)

Размер диагонали и разрешение . Если первый параметр очевиден и особых комментариев не требует, то на втором стоит остановиться подробнее. ЭЛТ-дисплеи могут одинаково хорошо работать в широком диапазоне разрешений, так как размер ячейки их теневой маски или апертурной решетки намного меньше пиксела изображения. Однако картинка на ЖК-панели выглядит оптимально в том случае, если видеоадаптер работает в «родном» для ЖК-монитора разрешении (native resolution). Ячейки ЖК-панели по сравнению с ячейками теневой маски довольно велики, и на один пиксел изображения приходится лишь одна RGB-ячейка матрицы. Поэтому для 15-дюймовых дисплеев основным рабочим является разрешение 1024×768, для 17- и 19-дюмовых – 1280×1024. Все прочие режимы будут лишь компромиссами: при установке на видеоадаптере ПК меньшего разрешения изображение масштабируется до нужного размера электроникой дисплея и в результате «замыливается». Если же разрешение видеорежима превышает оптимальное, то большинство мониторов отказывается с ним работать либо опять-таки картинка ухудшается из-за пересчета.

Обратите внимание, что несмотря на два дюйма разницы в размере диагонали, 17- и 19-дюймовые мониторы (в большинстве своем) характеризуются одним и тем же «родным» разрешением. То есть количество информации, которое можно разместить на них, одинаково, выигрыш лишь в большем размере точки для 19-дюймового дисплея. На практике чаще всего оказывается, что значительно приятнее работать именно с последним – за счет увеличенного размера ячеек матрицы (и соответственно, уменьшенного расстояния между ними) изображение, формируемое 19-дюймовым устройством, кажется лучше.

Частота обновления экрана . В эпоху ЭЛТ-мониторов этот параметр был важнейшим для достижения комфортного, немерцающего изображения на дисплее. Но для того чтобы человеческий глаз воспринимал быстро сменяющиеся кадры как движущуюся картинку, достаточно и 30 кадров в секунду (60 при чересстрочном формировании). Необходимость же поднимать частоту «рефреша» до 85, 100 и даже 120 Гц была вызвана тем, что на ЭЛТ-дисплеях изображение формируется построчным сканированием, причем, пока электронный луч «засветит» строку в нижней части экрана, обладающий небольшим временем светимости люминофор в верхней его части уже успевает отдать значительный процент своей энергии, и картинка темнеет – до следующего прохода луча.

Так как в ЖК-дисплеях кадр формируется целиком, и каждая ячейка матрицы – это транзистор с запоминающим конденсатором (storage capacitor), который долго хранит заряд, то никакое мерцание (чередование светлых и темных кадров) не возникает, и необходимой и достаточной частотой обновления является значение в 60 Гц. Именно на него рассчитана электроника ЖК-матрицы, и потому, даже если на видеоадаптере установлена более высокая частота, DSP дисплея будет пропускать лишние кадры, что может привести к рывкам движущегося на экране изображения.

Яркость и контрастность . Максимальная яркость ЖК-панели зависит от мощности ее подсветки и коэффициента пропускания матрицы и фильтров. Контрастность же определяется отношением интенсивности белого цвета к светимости черного цвета. Производители частенько указывают в паспортных данных мониторов значения, которые заявлены для установленных в них панелей, что, строго говоря, не совсем верно, так как электроника и качество сборки дисплея могут оказать существенное влияние на эти величины.

Паспортное значение максимальной яркости в 250 кд/м2 считается вполне достаточным, причем для работы при искусственном освещении хватает реального уровня в 100–120 кд/м2, а бóльшая яркость может понадобиться лишь при ярком солнечном свете.

С контрастностью не все так просто: в идеале чем больше она заявлена (при равной яркости), тем чище черный цвет на мониторе. На практике же иногда бывает так, что при меньшей заявленной контрастности на одном мониторе черный цвет выглядит заметно чище и глубже, чем на другом, в паспорте которого указано более высокое значение: здесь вступают в силу тип, эффективность антибликового покрытия экрана и прочие факторы.

Количество отображаемых цветов . Этот, на первый взгляд, не слишком информативный пункт спецификации подчас может многое сказать об установленной в монитор ЖК-матрице. Дело здесь вот в чем: разрядность большинства «сверхбыстрых» TN-матриц, в изобилии появившихся на рынке за последние несколько лет, составляет менее 8 бит на канал цветности (24 бит RGB), обычно лишь 6 (18 бит RGB), чего без применения специальных средств совершенно недостаточно для формирования всего спектра режима True Color: 28∙28∙28 дает 16 777 216 цветов, а 26∙26∙26 – только 262 144. Для эмуляции недостающих оттенков в управляющую электронику закладываются алгоритмы дизеринга – либо традиционные пространственные (когда варьируются цвета соседних точек), либо временные, когда отображаемый пикселом цвет переключается через каждый кадр; а иногда и различные их сочетания. В итоге глаз удается обмануть, однако качество изображения на такой матрице все же нельзя сравнивать с таковым для полноценной 24-битовой матрицы.

Поэтому еще совсем недавно при установке в монитор матрицы с уменьшенной разрядностью производители в графе «количество цветов» указывали 16,2 млн оттенков, а для полноценной 24-битовой – 16,7 млн. На сегодняшний же день, к сожалению, некоторые компании даже для 18-битовых панелей пишут 16,7 млн оттенков, и потому определить с помощью спецификаций, какая в мониторе матрица, возможным не представляется.

Углы обзора . Данный параметр очень важен для комфортной работы с монитором. Однако он, увы, утратил свою информативность – с тех пор как в спецификациях даже быстрых ЖК-матриц производители начали указывать значения 140–160°. Нет, это не значит, что углы обзора стали лучше, скорее наоборот, немного изменилась методика их измерений.

Исторически граничным углом обзора, вносимым в спецификации, считался такой, при котором контраст падал до 10:1. Как видите, уже тогда при этом совершенно не учитывались возникающие искажения цветопередачи, которые для TN-матриц подчас выражаются в инвертировании цветов. Для «быстрых» же матриц реальные углы обзора еще ýже, чем для обычных. Поэтому в последнее время некоторые производители ни с того ни с сего начали считать граничными углы обзора матрицы при контрасте не 10:1, а всего 5:1, что дает им основания указывать даже для «быстрых» TN-матриц значения выше 140°.

На практике же разница между углами обзора для разных типов матриц, как говорится, небо и земля. Если для «быстрых» TN заметные искажения наблюдаются даже при небольшом отклонении взгляда от угла нормали (иногда при нормальном угле зрения по центру монитора они уже заметны в его углах), то на современные мониторы, оснащенные PVA- и IPS-матрицами, можно смотреть практически под любым углом. Поэтому углы обзора мониторов на матрицах типа TN и MVA/PVA/IPS несравнимы, хотя цифры спецификаций подчас довольно схожи.

Время отклика. Это один из наиболее спорных и неоднозначных параметров современных ЖК-дисплеев. Гонка миллисекунд, которая длится вот уже несколько лет, привела к тому, что многие пользователи, особенно любители компьютерных игр, выбирают для себя монитор, руководствуясь исключительно данной характеристикой. Однако, как мы неоднократно подчеркивали в тестированиях, на практике заявленное низкое время реакции матрицы еще не гарантирует отсутствия смазывания движущегося изображения – более того, нередки случаи, когда, скажем, монитор с паспортным временем реакции 16 мс на поверку оказывается быстрее 12-миллисекундной модели.

Дело, как обычно, в выбранной методике измерения. Еще недавно временем реакции было принято считать суммарное время переключения пиксела с черного цвета на белый (trise) и обратно (tfall), точнее достижения значений яркости 90% и 10% соответственно. Но эта цифра не давала представления о том, как будет вести себя монитор в реальных условиях, и вот почему. При переходе от минимального уровня к максимальному прикладываемое к электродам матрицы напряжение также максимальное; следовательно, воздействие на жидкие кристаллы довольно сильное, что обеспечивает их быструю переориентацию в нужном направлении. Гораздо сложнее осуществить столь же стремительный поворот на небольшой угол (речь идет все же о кристаллах, хоть и «жидких» – их вязкость высока), что соответствует переходам от одного промежуточного состояния к другому (между оттенками серого). Приложенное напряжение будет уже не столь высоким, и время отклика может превысить заявленное в несколько раз – все зависит от типа и конструкции матрицы. В итоге для одной 16-милисекундной модели на экране хорошо видно смазывание, а для другой оно практически не проявляется, и оценить его можно только на глаз либо путем измерения и последующего усреднения длительности всех переходов между различными состояниями ЖК-ячейки (число которых для 8-битовой RGB-матрицы составит 256).

Разгоняем… монитор!

А нельзя ли как-то подогнать неторопливые кристаллы, чтобы ускорить время их поворота при переходе между промежуточными состояниями? Оказывается, можно. Для этого нужно знать их исходное положение (запомнить предыдущий кадр) и точно рассчитать так называемый разгонный импульс напряжения для нового значения пиксела в следующем кадре. Он значительно превышает номинальное для требуемого состояния напряжение, подаваемое после него, и поэтому быстро повернет кристаллы в нужное положение. Данная технология получила название overdrive, и ее корректное воплощение способно снизить время отклика ЖК-ячейки до минимального почти по всему диапазону ее состояний.

Проблема здесь заключается в соблюдении требуемой точности: даже в обычных панелях значения напряжений для формирования 256 состояний находятся в столь узком диапазоне, что управление ими представляет собой настоящее балансирование на острие ножа. Для нормальной же работы форсированной панели точность нужно повысить на порядок, что пока удается отнюдь не всем.

На данном этапе корректная настройка схемы overdrive для панели все еще технически сложная задача, и под силу далеко не всем производителям. В результате при смене состояния ячейки могут стать заметны артефакты – скажем, если оптимальное значение разгонного импульса будет превышено и кристаллы повернутся на больший, чем нужно, угол, через ячейку на какое-то время пройдет больше света. Визуально для движущегося на сером фоне черного объекта это выразится в светлой кайме вместо привычных смазанных фронтов, хотя, повторим, при корректно реализованной технологии такие артефакты появляться не должны.

Чтобы подчеркнуть преимущества мониторов, оборудованных панелями с технологией overdrive, производители выбрали другую методику измерения времени отклика. Если раньше это была сумма временных затрат на переключение ячейки из черного в белый и обратно, то теперь часто указывают усредненное время переключения из одного оттенка серого в другой (Gray-to-Gray, GTG). Однако легко заметить, что в последнем варианте измерения одним переключением меньше, поэтому в результате даже без применения overdrive получается более красивая цифра. Ну а этим быстро воспользовались маркетинговые отделы тех компаний, которые еще даже не воплотили поддержку overdrive в своих матрицах…

Одним словом, заявленное в спецификации время отклика, к сожалению, имеет мало общего со степенью смазывания движущегося изображения в реальных задачах. Для объективной же оценки данного параметра необходимо проводить большое количество измерений, да еще учитывая при этом, что пользовательские настройки монитора, о которых пойдет речь ниже, могут вносить в них существенные коррективы.

Настройка ЖК-монитора

Из всех параметров ЖК-дисплея, которые пользователь может подстраивать, как важнейшие мы выделим яркость, контраст, гамму и цветовую температуру. Следующее утверждение на первый взгляд может показаться нелепым, однако это горькая правда: при установке для них значений, отличных от заводских (точнее, оптимальных для данной ЖК-матрицы), велика вероятность заметного ухудшения цветопередачи. Единственным исключением здесь будет лишь регулировка яркости ламп подсветки, хотя она встречается не у всех моделей.

Если вспомнить устройство и принцип работы ЖК-монитора, то понять, почему так происходит, будет несложно. Без изменения яркости и спектра излучения ламп подсветки (первое возможно, а вот второе – нет) единственный способ реализации всех подобных настроек – подмешивание к видеосигналу, подаваемому на матрицу, некоторой постоянной составляющей. А это приведет к сужению рабочего диапазона значений ячеек матрицы и, как следствие, к уменьшению количества отображаемых цветов (которое даже для лучших панелей и так относительно невелико).

Убедиться же в этом на практике еще проще: достаточно загрузить популярную программу TFTtest.exe и вывести на экран монохромную градиентную заливку (либо нарисовать ее в любом растровом графическом редакторе), а потом поменять значения упомянутых настроек и понаблюдать за появляющимися искажениями, которые выражаются в виде ступенек и/или цветных разводов на градиенте.

  • Выполнить полный сброс установок.
  • Вывести на экран плавную монохромную градиентную заливку.
  • Отрегулировать яркость, контраст, гамму и цветовую температуру таким образом, чтобы на градиенте не наблюдались полосы, ступеньки и цветовые аномалии.
  • В дальнейшем из всех настроек монитора корректировать лишь яркость подсветки, если есть такая возможность, так как она не влияет на качество цветопередачи.
  • Все остальные параметры настраивать с помощью драйверов видеоадаптера либо аппаратного калибратора.

ЖК-мониторы: светлое будущее?

Рыночные перспективы этих устройств не вызывают сомнений, так как наблюдаемый высокий спрос на них однозначно свидетельствует: пользователи сделали свой выбор и жаждут поскорее сменить на своих столах громоздкие ЭЛТ-устройства на компактные и изящные ЖК-мониторы, забывая при этом о недостатках ЖК-технологии. К сожалению, ценовые и маркетинговые войны, развязываемые производителями, приводят к ухудшению ряда важнейших для качества изображения параметров на фоне улучшения лишь двух – времени реакции и стоимости. Особенно данная тенденция заметна для mainstream-дисплеев – 17- и 19-дюймовых устройств с панелями на базе технологии TN.

Таким образом, прогнозы скорой смерти матриц типа TN оказались, мягко говоря, несколько преувеличенными: раз большинство пользователей вполне устраивает такое качество изображения, то и необходимости его улучшать на сегодняшний день попросту нет. Для требовательных же покупателей, готовых платить за качество, остаются дисплеи на матрицах PVA и IPS больших диагоналей (19 дюймов и более). И до тех пор пока их время отклика и цена не сравняются с таковыми для TN-матриц (что маловероятно), господство последних на рынке не подлежит сомнению.

Плазменные дисплеи
(PDP - plasma display panel)

Коммерческий цикл любого изобретения не вечен, и производители, запустившие массовое производство LCD-мониторов, готовят следующее поколение технологий отображения информации. Устройства, которые придут на смену жидкокристаллическим, находятся на разных стадиях развития. Некоторые, такие, как LEP (Light Emitting Polymer - светоизлучающие полимеры), только выходят из научных лабораторий, а другие, например на основе плазменной технологии, уже представляют собой законченные коммерческие продукты.

Глубина монитора

Размер всегда был главным препятствием при создании широкоэкранных мониторов. Мониторы размером больше 24 дюймов, созданные с использованием ЭЛТ технологии, слишком тяжелые и громоздкие. ЖК-мониторы - плоские и легкие, но экраны, размер которых больше 20 дюймов, обладают слишком высокой себестоимостью. Плазменная технология нового поколения идеально подходит для создания больших экранов. Она позволяет выпускать плоские и легкие мониторы глубиной всего 9 см (см. рис. 1). Поэтому, несмотря на большой экран, они могут быть установлены в любом месте - на стене, под потолком, на столе.

Рисунок 1. Глубина монитора.

Благодаря широкому углу обзора изображение видно с любой точки. И что самое главное, плазменные мониторы способны передать цвет и резкость, которые раньше были недостижимы при таком размере экрана.

Идея использования газового разряда в средствах отображения не нова. Подобные устройства выпускались много лет назад в СССР в Рязани в НПО «Плазма». Однако размер элемента изображения был достаточно велик, так что для получения приличного изображения было нужно создавать огромные табло. Изображение было некачественным, передавалось мало цветов, устройства были крайне ненадежными.

За рубежом исследования и разработки в области этой технологии начались еще в начале 60-х годов. Еще лет пятьдесят назад было открыто одно интересное явление. Как оказалось, если катод заострить на манер швейной иглы, то электромагнитное поле в состоянии самостоятельно «выдергивать» из него свободные электроны. Необходимо только подать напряжение. По такому принципу работают лампы дневного света. Вылетающие электроны ионизируют инертный газ, чем заставляют его светиться. Трудность заключалась лишь в отработке технологии получения таких игольчатых матриц. Ее решили в Университете штата Иллинойс в 1966 году. В начале семидесятых годов компания Owens-Illinois довела проект до коммерческого состояния. В восьмидесятых годах эту идею пытались воплотить в реальный коммерческий продукт компании Burroughs и IBM, но тогда еще безуспешно.

Надо сказать, что идея плазменной панели появилась вовсе не из чисто научного интереса. Ни одна из существовавших технологий не могла справиться с двумя простыми задачами: добиться высококачественной цветопередачи без неизбежной потери яркости и создать телевизор с широким экраном, чтобы он при этом не занимал всю площадь комнаты. А плазменные панели (PDP), тогда только теоретически, подобную задачу как раз могли решить. Первое время опытные плазменные экраны были монохромными (оранжевыми) и могли удовлетворить спрос только специфических потребителей, которым требовалась, прежде всего, большая площадь изображения. Поэтому первую партию PDP (около тысячи штук) купила Нью-йоркская фондовая биржа.

Направление плазменных мониторов возродилось после того, как стало окончательно ясно, что ни ЖК-мониторы, ни ЭЛТ не в состоянии недорого обеспечить получение экранов с большими диагоналями (более двадцати одного дюйма). Поэтому лидирующие производители бытовых телевизоров и компьютерных мониторов, такие, как Hitachi, NEC и другие, вновь вернулись к PDP. В область плазменной технологии также обратили свои взоры и корейские компании «второй мировой линии», среди которых, например, Fujitsu, производящая более дешевую электронику, что тут же внесло остроту конкуренции. Сейчас Fujitsu, Hitachi, Matsushita, Mitsubishi, NEC, Pioneer и другие производят плазменные мониторы с диагональю 40 дюймов и более.

Принцип работы плазменной панели состоит в управляемом холодном разряде разреженного газа (ксенона или неона), находящегося в ионизированном состоянии (холодная плазма). Рабочим элементом (пикселем), формирующим отдельную точку изображения, является группа из трех субпикселей, ответственных за три основных цвета соответственно. Каждый субпиксель представляет собой отдельную микрокамеру, на стенках которой находится флюоресцирующее вещество одного из основных цветов (см. рис. 2). Пиксели находятся в точках пересечения прозрачных управляющих хром-медь-хромовых электродов, образующих прямоугольную сетку.

Конструкция ячейки

Рисунок 2. Конструкция ячейки.

Для того, чтобы «зажечь» пиксель, происходит приблизительно следующее. На питающий и управляющий электроды, ортогональные друг другу, в точке пересечения которых находится нужный пиксель, подается высокое управляющее переменное напряжение прямоугольной формы. Газ в ячейке отдает большую часть своих валентных электронов и переходит в состояние плазмы. Ионы и электроны попеременно собираются у электродов, по разные стороны камеры, в зависимости от фазы управляющего напряжения. Для «поджига» на сканирующий электрод подается импульс, одноименные потенциалы складываются, и вектор электростатического поля удваивает свою величину. Происходит разряд - часть заряженных ионов отдает энергию в виде излучения квантов света в ультрафиолетовом диапазоне (в зависимости от газа). В свою очередь, флюоресцирующее покрытие, находясь в зоне разряда, начинает излучать свет в видимом диапазоне, который и воспринимает наблюдатель. 97% ультрафиолетовой составляющей излучения, вредного для глаз, поглощается наружным стеклом. Яркость свечения люминофора определяется величиной управляющего напряжения.

Взаимодействия в PDP-ячейке

Рисунок 3. Взаимодействия в ячейке.

Высокая яркость (до 650 кд/м 2) и контрастность (до 3000:1) наряду с отсутствием дрожания являются большими преимуществами таких мониторов (Для сравнения: у професионального ЭЛТ-монитора яркость равна приблизительно 350 кд/м 2 , а у телевизора - от 200 до 270 кд/м 2 при контрастности от 150:1 до 200:1). Высокая четкость изображения сохраняется на всей рабочей поверхности экрана. Кроме того, угол по отношению к нормали, под которым увидеть нормальное изображение на плазменных мониторах, существенно больше, чем у LCD-мониторов. К тому же плазменные панели не создают магнитных полей (что служит гарантией их безвредности для здоровья), не страдают от вибрации, как ЭЛТ-мониторы, а их небольшое время регенерации позволяет использовать их для отображения видео- и телесигнала. Отсутствие искажений и проблем сведения электронных лучей и их фокусировки присуще всем плоскопанельным дисплеям. Необходимо отметить и стойкость PDP-мониторов к электромагнитным полям, что позволяет использовать их в промышленных условиях - даже мощный магнит, помещенный рядом с таким дисплеем, никак не повлияет на качество изображения. В домашних же условиях на монитор можно поставить любые колонки, не опасаясь возникновения цветных пятен на экране.

Главными недостатками такого типа мониторов является довольно высокая потребляемая мощность, возрастающая при увеличении диагонали монитора и низкая разрешающая способность, обусловленная большим размером элемента изображения. Кроме этого, свойства люминофорных элементов быстро ухудшаются, и экран становится менее ярким. Поэтому срок службы плазменных мониторов ограничен 10000 часами (это около 5 лет при офисном использовании). Из-за этих ограничений, такие мониторы используются пока только для конференций, презентаций, информационных щитов, то есть там, где требуются большие размеры экранов для отображения информации. Однако есть все основания предполагать, что в скором времени существующие технологические ограничения будут преодолены, а при снижении стоимости, такой тип устройств может с успехом применяться в качестве телевизионных экранов или мониторов для компьютеров.

Тип дисплея прямого свечения Принцип работы дисплея Основные достоинства и недостатки Особенности и перспективы развития
Кинескопные (CRT - Catod Ray Tube) Термоэмиссия электронов, ускоряющихся электростатическим полем. Отклонение электронного пучка (развертка растра) магнитным полем катушек ОС. Излучение света люминофоров основных цветов за счет энергии ускоренных электронов. 1. Воспроизводят полный цветовой треугольник (локус) человеческого зрения.2. Прекрасное разрешение и высокая контрастность.3. Большие масса и габариты. 1. Разработка кинескопов повышенного разрешения со сверх плоским экраном.2.Ведутся работы по повышению экономичности новых кинескопов.
Плазменные панели PDP (Plasma Display Panel) Свечение люминофоров основных цветов в результате воздействия УФ-излучения, возникающего при электрическом разряде в плазме. Плазма образуется при электрическом разряде постоянного (DC) или переменного (AC) тока в разряженном газе между двумя стеклянными пластинами дисплея. 1. Большая яркость, полный цветовой треугольник (локус).2. Легкость создания больших плоских панелей с диагональю 40 дюймов и более.3.Широкий угол обзора (более 160 градусов). Сегодняшние достижения плазменных панелей с диагональю 40 дюймов и более:яркость свечения экрана 350 кд/м2, контраст 300:1,разрешение 640х480 пикселей и более, экономичность порядка 10 Вт/люмен.
Плазма - адресуемые панели PALC (Plasma Adressing Liquid Crystal Display Device) Комбинированная конструкция - для управления (коммутации) активной ЖК-матрицы (LCD). В качестве ключа используется проводящий канал в разряженном газе (плазме). 1. Большая яркость, полный цветовой треугольник (локус).2. Легкость создания больших плоских панелей с диагональю 40 дюймов и более.3. Экономичночть.4. Возможность создания панелей высокого разрешения.5. Малый угол обзора (в последних моделях значительно расширен). Достижения панелей PALC: экономичность 1,2 мВт/люмен, серийно изготавливаются панели с диагональю 40-60 дюймов.

Сравнительная характеристика дисплеев прямого свечения.

Неплохие перспективы PDP связывают с относительно низкими требованиями к производственным условиям; в отличие от TFT-матриц PDP-экраны можно изготовлять в условиях низких температур методом прямой печати.

Практически каждый производитель плазменных панелей добавляет к классической технологии некоторые собственные ноу-хау, улучшающие цветопередачу, контрастность и управляемость. В частности, NEC предлагает технологию капсулированного цветового фильтра (CCF), отсекающего ненужные цвета, и методику повышения контрастности за счет отделения пикселей друг от друга черными полосами (такая же технология используется Pioneer). В мониторах Pioneer также используются технология Enhanced Cell Structure, суть которой в увеличении площади люминофорного пятна, и новая химическая формула голубого люминофора, который дает более яркое свечение, и, соответственно, повышает контрастность. Компания Samsung разработала конструкцию монитора повышенной управляемости - панель разделена на 44 участка, каждый из которых имеет собственный электронный блок управления.

Компании Sony, Sharp и Philips совместно разрабатывают технологию PALC (Plasma Addressed Liquid Crystal), которая должна соединить в себе преимущества плазменных и LCD экранов с активной матрицей. Дисплеи, созданные на основе данной технологии, сочетают в себе преимущества жидких кристаллов (яркость и сочность цветов, контрастность) с большим углом видимости и высокой скоростью обновления плазменных панелей. В качестве регулятора яркости в этих дисплеях используются газоразрядные плазменные ячейки, а для цветовой фильтрации применяется ЖК-матрица. Технология PALC позволяет адресовать каждый пиксель дисплея по отдельности, а это означает непревзойденную управляемость и качество изображения. Первые образцы на основе технологии PALC появились в 1998 году.

Можно привести несколько удачных примеров использования плазменных мониторов. В торговом центре в Осло установлено 70 дисплеев, на которых покупают рекламное время небольшие магазинчики. Там PDP-мониторы окупили себя за 2,5 месяца. Используют их и в аэропортах. В частности, в Вашингтоне они установлены в зале прилета. Благодаря своей динамичности такой способ подачи информации привлекает гораздо больше внимания, чем традиционные табло. Есть опыт применения плазменных мониторов и в ресторанах McDonalds. Различные телевизионные компании, например CBS, NBC, BBS, MTV и российская НТВ используют в оформлении своих студий PDP-мониторы. Это связано с тем, что высокая частота обновления позволяет вести съемку PDP-дисплея обычной камерой, и при этом не возникает мерцания или стробоскопического эффекта.

Итак, несмотря на довольно высокую цену, плазменные мониторы уже сейчас находят применение во многих отраслях - вложенные в них деньги быстро окупаются. Рост объемов продаж плазменных дисплеев и постоянное совершенствование конструкции позволяет предположить, что в перспективе цены на них упадут до уровня ЭЛТ-мониторов. По словам представителей Fujitsu, у этой компании есть четкая цель - довести стоимость плазменной панели до $100 за один дюйм диагонали. «Таким образом, 42-дюймовая панель будет стоить $4200, что уже весьма близко к стоимости ЭЛТ-моделей аналогичного размера», - говорят они. Когда точно это случится, предсказать пока трудно, но, по оценкам специалистов, в качестве крайнего срока можно рассматривать 2005 год.

Field Emission Display (FED)
дисплеи с электростатической (автоэлектронной) эмиссией

Технологии, которые применяются при создании мониторов, могут быть разделены на две группы: 1) мониторы, основанные на излучении света - традиционные ЭЛТ-мониторы и плазменные дисплеи, то есть устройства, элементы экрана которых излучают свет во внешний мир; 2) мониторы трансляционного типа - LCD мониторы. Одним из лучших технологических направлений в области создания мониторов, которая совмещает в себе особенности обоих технологий, описанных выше, является технология FED (Field Emission Display). Этот тип мониторов начал осваиваться в США и Европе в ответ на прорыв Японии в области ЖК-мониторов.

Мониторы FED основаны на процессе, который немного похож на тот, что применяется в ЭЛТ-мониторах, так как в обоих методах применяется люминофор, светящийся под воздействием электронного луча. Также их называют плоскими ЭЛТ. Главное отличие между ЭЛТ и FED мониторами состоит в том, что ЭЛТ-мониторы имеют три пушки, которые испускают три электронных луча, последовательно сканирующих экран, покрытый люминофорным слоем, а в FED-мониторе каждый пиксель изображения формируется излучением электронов с нескольких тысяч субмикрометровых остроконечных элементов поверхности. Благодаря этому не требуется высоковольтная эмиссия, и рабочее напряжение устройства может быть существенно снижено. Оно во многом зависит от материала эмитирующей поверхности. Например, если электроны генерируются молибденом, то на управляющие электроды достаточно подать 12 В. Но, несмотря на привлекательность низковольтной конструкции, оказалось, что для эффективного облучения люминофора все же требуется разогнать электроны в высоковольтном поле. Другая проблема FED-дисплеев - поддержание вакуума в экранах большого размера. Конструкция должна быть достаточно прочной, чтобы противостоять сжимающему атмосферному давлению.

FED мониторы обеспечивают высокую яркость изображения (600–800 кд/м 2) и угол обзора 160° во всех направлениях, а также имеют очень короткое время отклика, легки, тонки, потребляют мало электроэнергии, могут работать в широком температурном диапазоне. Но, к сожалению, еще не решена главная проблема FED-дисплеев - невысокий срок работы.

Типичные характеристики уже действующих FED"ов: размер по диагонали 10–27 см, толщина порядка нескольких миллиметров, допустимый интервал рабочей температуры от –5 до +85°С. По прогнозам, к концу 2001 года в мире будет производиться около миллиона 14,1-дюймовых FED-дисплеев (в год).

В Красноярском государственном техническом университете (КГТУ) также разработана технология производства FED-дисплеев. Производство экранов планируется проводить совместно с ОАО «Искра». Бизнес-план по «Организации производства полевых эмиссионных дисплеев» представлен в администрацию Красноярского края, прошел два этапа экспертизы и в настоящее время выставлен на постоянно действующей Российской выставке инвестиционных проектов.

Light Emission Plastics (LEP)

Начало LEP-технологии было положено в 1989 году, когда профессор Ричард Френд вместе с группой химиков научной лаборатории Кембриджского университета открыл светоизлучающие полимеры (Light Emitting Plastics). Вскоре выяснилось, что открытые вещества обладают рядом свойств, которые позволяют разработать на их основе семейство дисплеев нового поколения. Для изучения LEP и создания новых дисплеев была образована компания CDT (Cambridge Display Technologies). Вскоре CDT нашла инвесторов, и в 1992 году началась разработка первого монитора, сделанного на основе LEP-технологии.

Светоизлучающие полимеры - это одна из разновидностей так называемых сопряженных полимеров, электропроводность разных представителей которых лежит в весьма широком диапазоне, и они, будучи расположенными между электродами, излучают свет. Эти полимеры (полифениленвинилен (PPV) и циано-PPV (CN-PPV)) являются полупроводниками, кроме того, еще и самоизолируемыми.

хим. строение PPV и CN-PPV

Рисунок 4. Химическое строение PPV и CN-PPV.

технология LEP

Рисунок 5. Конструкция LEP-дисплея.

первый LEP-монитор

Достаточно логично, что первым коммерческим применением проводящего пластика стали проводники. На данный момент такие пластики по проводимости приближаются к меди и имеют срок службы порядка 10 лет. Они применяются (в частности, компанией Matsushita) для изготовления электродов в батареях, проводящего покрытия электростатических динамиков, антистатических покрытий, и, что особенно важно, для нанесения проводящих дорожек на печатных платах. Однако, как оказалось, наиболее интересной и экономически перспективной областью применения светоизлучающих пластиков стало создание различных устройств воспроизведения визуальной информации, то есть дисплеев.

Рисунок 6. Конструкция LEP-дисплея.

Так тесное сотрудничество компании CDT с японской корпорацией Seiko Epson привело в конечном итоге к созданию первого в мире пластикового монитора (официально об этом было объявлено 16 февраля 1998 года). Представленный дисплей был монохромным (черно-желтым), имел разрешение 800x236 точек и площадь около 50 мм 2 при толщине всего в 2 мм. Каждым пикселем этого дисплея управлял отдельный тонкопленочный транзистор (TFT), а светоизлучающий полимер наносился на коммутирующую матрицу в жидком виде по технологии, аналогичной стандартной струйной печати.

Существует ряд причин, как чисто техничесих, так и коммерческих, которые делают LEP одним из главных кандидатов на роль основополагающей технологии мониторов следующего поколения. В первую очередь, это относительная простота применения тонкопленочных технологий на основе стандартных литографических процессов при низких затратах и высокой надежности производства. Немаловажной деталью является тот факт, что LEP-мониторы работают при напряжении питания всего около 5 В и имеют очень малый вес. Это позволяет использовать их в малогабаритных преносных устройствах (мобильные телефоны, дисплеи ноутбуков, калькуляторы, видеокамеры, цифровые фотоаппараты), которые питаются от аккумуляторов и батарей. Кроме того, устройство монитора достаточно простое - слои полимера наносят прямо на TFT-матрицу и на прозрачную подложку. Незначительное влияние соседних электронов, обусловленное хорошими изоляционными свойствами полимера, позволяет формировать изображение из самых малых элементов. Таким образом, можно получить практически любое разрешение и придать отдельному пикселю, а также экрану в целом произвольную форму. И, наконец, еще одно немаловажное преимущество LEP-мониторов - они очень тонкие. Это позволяет наносить различные поляризационные покрытия, обеспечивающие высокую контрастность изображения. Кроме того, в отличие от ЖК-дисплеев, угол обзора новых устройств может достигать 180° за счет того, что пластик излучает сам и не требует подсветки. Одной из главных проблем LEP-технологии является низкая эффективность излучения света (т.е. отношение его интенсивности к плотности проходящего тока). Изначально это соотношение составляло 0,01%, однако компания CDT смогла поднять этот показатель до 5% при излучении желтого света, что сравнимо с эффективностью современных неорганических светодиодов (LED). Существенным недостатком был и достаточно узкий диапазон цветов, в котором излучали пластики. Его границы удалось расширить, и в настоящее время он простирается от синего до ближнего инфракрасного (при этом его эффективность составляет около 1%). Полимерный экран нуждается в герметизации, чтобы избежать расслоения под действием водяных паров. Еще одна проблема заключалась в крайне низком сроке службы LEP-мониторов из-за обесцвечивания пластика под действием УФ-лучей, однако за счет использования многослойной структуры и других технических ухищрений его продлили до 5 лет (именно такая продолжительность эксплуатации дисплеев является сегодня характерной для ЭЛТ-мониторов). При различных температурных режимах срок службы LEP-мониторов составляе более 7000 часов при 20° С и около 1100 часов при 80° С без ухудшения характеристик для устройств, произведенных и эксплуатирующихся в нормальных атмосферных условиях, а срок хранения устройств при воздействии яркого света и повышенной температуры без потери работоспособности - более 18 месяцев. При этом компания продолжает работы в этом направлении, стремясь довести срок жизни LEP-устройств хотя бы до 20000 часов, что, по мнению инженеров компании, достаточно для большинства применений.

К настоящему моменту CDT уже разработала полноцветный полимерный дисплей. Несмотря на то, что компании еще есть над чем поработать, можно утверждать, что по прошествии некоторого времени LEP-дисплеи составят достойную конкуренцию по качеству и цене как ЖК, так и ЭЛТ-мониторам. В настоящее время с CDT сотрудничают такие компании, как Seiko Epson, Intel, HP и др. В конце февраля 2000 года CDT объявила о завершении строительства предприятия по производству LEP-материалов. Объем инвестиций в этот проект оценивается в $3 млн. Ввод в строй нового предприятия не только позволит увеличить объем выпуска LEP-полимеров для исследовательских нужд самой компании, но и даст возможность осуществлять поставки компаниям-партнерам CDT.

И совсем недавно (летом 2000 года) компания CDT объявила о завершении разработки дисплея, который в буквальном смысле можно будет распечатать на струйном принтере. Но гибкое покрытие напыляют светоизлучающие полимеры, после чего к подложке достаточно подвести токопроводящие подложки, чтобы получить цветное изображение. Cтоимость такого монитора составляет 60% от цены сопоставимого по размерам ЖК-монитора.

Электролюминесцентные мониторы
(electroluminescent displays)

ЭЛ-мониторы похожи на ЖК, но имеют специальные доработки, обеспечивающие светоизлучение при туннельных переходах. Эти мониторы имеют высокие частоты развертки, хорошую надежность и яркость. Они работают в широком спектре температур (от –40 до +85° C). Однако для ЭЛ-мониторов необходимо высокое напряжение (>80 Вт), цвета у них не такие чистые, как у ЖК-моделей, и изображение на ярком свете тускнеет. Среднее время наработки до отказа (MBTF) составляет 100000 часов. Время отклика меньше 1 мс. Угол обзора более 160°.

Конструкция EL-дисплея

Рисунок 7. Конструкция EL-дисплея.

EL-дисплей

Рисунок 8. EL-дисплей.

Рисунок 9. Время отклика.

Угол обзора

Рисунок 10. Угол обзора.

Температурный диапазон

Рисунок 11. Температурный диапазон.

Вакуумные флуоресцентные мониторы
(vacuum fluorescent displays)

Эти мониторы могут работать при более низкой мощности, чем плазменные и электролюминесцентные мониторы. Эта технология использует высокоэффективное фосфорное покрытие, нанесенное непосредственно на каждый прозрачный анод в области экрана. Однако эти модели имеют относительно низкое разрешение, так как размер матрицы ограничивается шириной точек фосфора. Поэтому ее используют в низкоинформационных приложениях. Эта технология широко о себе заявила в такой области, как экраны объявлений, так как на таких мониторах изображение хорошо видно на ярком свету.

Рисунок 12. VFDisplay.

Электронная бумага

Компания E Ink (Кембридж, штат Масачусетс) и Bell Labs, исследовательское подразделение Lucent Techologies, основываясь на результатах исследований процесса электрофореза, выполненных в лаборатории MIT Media Lab, получили вещество, похожее на краску и способное изменять цвет под воздействием электрического поля.

Принцип работы «электронных чернил» пояснен рисунками:

Технология E Ink 1

Электронные чернила - цветная жидкость, состоящая из миллионов крошечных сфер, называемых микрокапсулами. Каждая микрокапсула имеет прозрачную оболочку, наполнитель синего цвета и микроскопические частицы белого пигмента.

В настоящее время существует большое количество типов или видов мониторов , имеющих отличия в технологии изготовления экрана, и как следствие, качество воспроизведения изображения и применения в различных областях деятельности. Перечислим основные виды мониторов и дадим краткую характеристику:

Электронно‐лучевые мониторы. Исторически самые первые. Состоят из вакуумной электронной трубки, в которой пучки электронов, с помощью магнитной системы отклонения, формируются и управляются. Эти пучки электронов бомбардируют слой люминофора на котором проецируется изображение, возникает свечение и, в результате, возникает изображение. Поскольку данные мониторы практически вытеснены повсеместно, более детально их рассматривать не будем.

Основные недостатки данных мониторов:

⁃Большие габариты, связанные с принципиальным устройством электронно‐лучевой трубки.

⁃Большая масса, связанная с первой характеристикой.

⁃Искажения изображения на переферии монитора, связанные с физическим устройством электронно‐ лучевой трубки и принципиальной невозможностью производства плоских мониторов по этой технологии.

⁃Конструктивная необходимость использования высокого напряжения, до 50 кВольт, что влияет не лучшим образм на энергосберегающие характеристики, а также безопасность.

Жидкокристаллические мониторы или LCD по‐английски. Эффект изменения положения молекулы жидкого кристалла под действием напряжения был известен давно. Практический эффект был получен ещё в начале 60‐х годов прошлого века. Тогда впервые появились миниатюрные дисплеи в наручных часах, калькуляторах, различных индикаторах. С течением времени технология совершенствовалась, хорошим толчком послужило появление ноутбуков и других портативных компьютеров.

Применение данной технологии в производстве мониторов позволило решить полностью проблемы, которые были у их предшественников, электронно‐лучевых мониторов. Габариты значительно уменьшились, в десятки раз. Теперь нет необходимости специально выделять большое место под монитор. В связи с этим значительно уменьшился вес самого монитора. Теперь по массе он сопоставим с ноутбуком. Естественно, это касается не очень больших мониторов. Искажения, характерные для электронно‐лучевых мониторов, исчезли, поскольку экран жидкокристаллической матрицы действительно плоский.

Однако, жидкокристаллическим мониторам присущи свои недостатки, которые фирмы‐производители пытаются преодолеть, внедряя новые технологии. К таким недостаткам относятся более низкая контрастность и насыщенность цвета изображения. Время отклика матрицы(появилась новая характеристика для LCD) на первых порах была большой, это приводило к тому, что динамические сцены показывались с артефактами изображения. Связано это с инерционностью переключения состояния жидких кристаллов. Малые углы обзора, когда одна и таже картинка, если смотреть сбоку, сверху или снизу начинает искажать или инвертировать цвета.

Для преодоления этих недостатков фирмы‐производители начали совершенствовать технологию жидкокристаллических матриц, что привело к созданию следующих типов мониторов, различающихся по технологии изготовления матрицы:

⁃TN+film(Twisted Nematic или скрученные нематически), исторически первые жидкокристаллические матрицы, в которой кристаллы выстроены друг за другом, но расположены относительно плоскости дисплея или взгляда по спирали. При подаче напряжения эта спираль «скручивается» на величину, зависящую от напряжения. Пиксел окрашивается в тот или иной цвет.

⁃S‐IPS, разработка фирмы Hitachi, кристаллы закручены не в спираль, а выстроены друг за другом параллельно. Это позволяет получить более качественные цвета, но время отклика увеличивается, так как нужно больше времени на поворот всего массива кристаллов.

⁃MVA/PVA, компания Fujitsu разработала очередную технологию, устраняющую недостатки цветопередачи технологии TN и уменьшающее время отклика по сравнению с технологией S‐IPS. Для этого пришлось существенно усложнить строение и матрицы, и фильтров‐поляризатров. Фирма Samsung разработала собственную технологию PVA, чтобы не платить лицензионные сборы. Технологии эти похожи, а отличие в большей контрастности изображения.

⁃PLS, технология разработанная фирмой Samsung, позиционируется в способности дать более контрастное изображение по сравнению с технологией S‐IPS, и дешевле на 10% по сравнению с ней. Технология изготовления и устройства матрицы неизвестна. До недавнего времени данный тип матриц использовался в мобильных устройствах.

Плазменные мониторы или PDP по‐английски. Используется эффект свечения инертных газов под высоким напряжением. Данная технология избавлена от недостатков, присущих жидкокристаллическим матрицам. Яркость и контрастность картинки на высоте, и поскольку элементы матрицы получаются достаточно большими, что влияет на разрешающую способность не лучшим образом, это практически не видно. Изображение динамических сцен также передаются без искажений. Углы обзора большие, картинку видно без потери цвета с любого направления. Толщина экрана стала ещё меньше, по сравнению с жидкокристаллическими мониторами.

OLED‐мониторы или мониторы с матрицей из органических светодиодов. Являются приемниками жидкокристаллических мониторов. К преимуществам относятся чрезвычайно низкое энергопотребление, так как данные светодиоды светятся сами по себе. Нет нужды в лампе подсветки. Чрезвычайно высокая контрастность, высокое быстродействие, время отклика измеряется в микросекундах, в отличие от миллисекунд в жидкокристаллических мониторах. Глубина OLED‐монитора ещё тоньше, чем у плазменных мониторов. А углы обзора состовляют 180 градусов, так как мы смотрим на сами светодиоды, а не на фильтры, как у жидкокристаллических мониторов.

Несмотря на такие выдающиеся характеристики есть и недостатки. Это недолговечность OLED‐матрицы при дороговизне подобных мониторов является решающим фактором низкого спроса на них. А это влияет на скорость внедрения разработок, ведь фирмы несут убытки. Зачем тратить большие ресурсы на убыточное дело?

Но несмотря на это, разработчики не оставляют попытки решить указанные проблемы, так как OLED‐технология позволяет делать фантастические вещи: сворачивать экран в трубочку, создавать прозрачные табло, использовать в широком диапозоне температур и т.д. Для любителей подобных вещей продаются OLED‐мониторы, стоимостью порядка 8000$, с диагональю экрана около 60 см.

На сегодняшний день это самые распространённые виды мониторов , за исключением самого первого и последнего в нашем списке. Времена первого уже прошли, а у последнего еще всё впереди. Рассмотрим более детально технологии изготовления матриц мониторов.

Алексей Борзенко

Для создания плоских дисплеев (Flat Panel Display, FPD) в настоящее время используют различные технологии и решения, хотя на рынке по-прежнему доминируют жидкокристаллические (ЖК) экраны. Как известно, по технологии создания современные дисплеи можно разделить на две группы. К первой группе относятся устройства, основанные на излучении (эмиссии) света, например, традиционные на базе электронно-лучевых трубок (ЭЛТ), и плазменные дисплеи (Plasma Display Panel, PDP). Во вторую группу входят устройства трансляционного типа, к которой относятся и ЖК-мониторы. Устройства обеих групп имеют собственные, вполне определенные достоинства и недостатки. Если же говорить о будущей конвергенции устройств, то перспективные решения в области создания современных дисплеев действительно часто совмещают особенности обеих технологий.

Плазменные дисплеи

На рынке больших экранов до сих пор преобладают так называемые плазменные дисплеи - PDP (рис. 1). Первые исследования и разработки в этой области относятся к началу 60-х годов. Стоит напомнить, что монохромные PDP-экраны использовались даже в некоторых переносных компьютерах. Работа плазменных мониторов очень похожа на работу неоновых ламп, сделанных в виде трубки, заполненной инертным газом низкого давления. Внутрь трубки помещена пара электродов, между которыми зажигается электрический разряд, и возникает свечение. Аналогично, плазменные экраны создаются путем заполнения пространства между двумя стеклянными поверхностями инертным газом, например, аргоном или неоном. Затем на стеклянную поверхность помещают маленькие прозрачные электроды, на которые подается высокочастотное напряжение. Под действием этого напряжения в прилегающей к электроду газовой области возникает электрический разряд. Плазма газового разряда излучает свет в ультрафиолетовом диапазоне, который вызывает свечение частиц люминофора в диапазоне, видимом для человека. Фактически каждый пиксел на экране работает, как обычная флуоресцентная лампа.

Высокая яркость и контрастность наряду с отсутствием дрожания составляют большое преимущество таких мониторов. Кроме того, угол (по отношению к нормали), под которым можно увидеть нормальное изображение на плазменных панелях, существенно больше, чем у обычных ЖК-мониторов. Главные же недостатки PDP-устройств - довольно высокая потребляемая мощность, возрастающая при увеличении диагонали монитора, и низкая разрешающая способность, обусловленная большими размерами элемента изображения.

Цветные PDP-дисплеи сегодня выпускают практически все крупные японские и южнокорейские компании, работающие в этой сфере, - LG, Mitsubishi, NEC, Panasonic, Pioneer, Samsung. Лидером в этом секторе рынка заслуженно считается корпорация Fujitsu (http://www.fujitsu.com), которая еще в 1999 г. организовала с Hitachi совместное предприятие для производства плазменных дисплеев. Для повышения качества изображения и уменьшения цены корпорация, в частности, разработала специальную технологию Alternate Lighting of Surfaces (ALiS).

Японская ассоциация по электронике и информационным технологиям - JEITA оценивает в этом году рынок PDP-устройств на уровне 4,3 млн шт. Однако все производители сегодня активно ищут замену данной технологии и, по имеющейся информации, даже Fujitsu планирует отказаться от PDP в пользу более перспективных решений.

Органические и полимерные дисплеи

Как предполагают многие аналитики, объем рынка нанотехнологий будет ежегодно расти на 40% в течение ближайших 10-15 лет, а вычислительная техника и электроника одними из первых получат реальную возможность применения нанотехнологий на практике. Так, компания NanoBillboard (http://www.nanobillboard.com) опубликовала список 10 лучших на сегодня продуктов, созданных с помощью нанотехнологий; критериями отбора были популярность на рынке, использование нанотехнологий и применение продукта в повседневной жизни. Первым номером в этом списке оказались органические светоизлучающие диодные (Organic Light Emitting Diode, OLED) дисплеи, созданные из нескольких слоев нанопленок. Отметим, что оборот от продаж OLED-устройств во всем мире за прошлый год, согласно оценкам аналитической компании iSuppli (http://www.isuppli.com), увеличился примерно на 74% по сравнению с 2003 г. и должен составить свыше 430 млн долл.

Вообще говоря, светодиоды - вещь совершенно не новая. В технике они получили широкое распространение еще в середине прошлого века, а идея создания первых устройств отображения на базе подобных диодов возникла в начале 1980-х годов, но не была реализована из-за отсутствия необходимых материалов. Ситуация изменилась с появлением органических материалов особой группы - так называемых проводящих электролюминесцентных полимеров. Основой для этих материалов служат высокомолекулярные соединения с молекулами, в которых имеются чередующиеся двойные связи. В чистом виде они не являются проводниками заряда, поскольку электроны в них локализованы за счет участия в образовании сильных химических связей. Для освобождения электронов применяются различные примеси, после добавления которых и появляется возможность перемещения зарядов (электронов и дырок) вдоль молекулярной цепи.

Таким образом, в основе технологии лежат свойства так называемых сопряженных полимеров. В их молекулах атомы углерода образуют между собой двойные (или тройные) связи, на образование которых каждый атом отдает два электрона вместо обычного одного. В результате перекрытия p-орбиталей появляются "свободные" электроны; как следствие, становится возможным протекание электрического тока вдоль молекулярных цепей. Возникают энергетические зоны валентности и проводимости, разделенные запретной зоной. Так полимеры приобретают свойства полупроводников. Эти материалы обладают всеми теми же свойствами, что и неорганические полупроводники, т. е. способны образовывать p-n-переход и - что особенно важно - при определенных условиях излучать свет. Это позволило создать комбинированные по принципу действия устройства - излучающие диоды.

В исследованиях OLED выделилось два основных направления, одно из которых заложили ученые из Eastman-Kodak, еще в 1987 г. опубликовавшие статью Organic electroluminiscent diodes, где был описан новый класс тонкопленочных устройств на базе органических материалов, обладающих электролюминесцентными свойствами, заметно превосходящими все, что было создано в этой области ранее. Впервые предложенная Kodak схема с двумя слоями органики между электродами вместо одного и сегодня остается одним из основных вариантов для создания OLED-устройств. При этом технологический процесс использует циклы вакуумного испарения (осаждения). Еще в феврале 1999 г. корпорации Sanyo Electric и Eastman-Kodak образовали альянс для разработки и продвижения на рынке OLED-дисплеев. Уже через несколько месяцев они смогли показать работающий прототип полноцветного активноматричного дисплея.

Основы другого направления - технологии Polymer LED были заложены в 1989 г., когда профессор Ричард Френд (Richard Friend) вместе с группой химиков лаборатории Кембриджского университета открыл светоизлучающие полимеры LEP (Light Emitting Polymer). Вскоре выяснилось, что открытые вещества обладают рядом свойств, которые позволяют разработать на их основе семейство дисплеев нового поколения. Для изучения LEP и создания новых дисплеев была образована компания CDT (Cambridge Display Technologies, http://www.cdtltd.co.uk). Вскоре она нашла инвесторов, и началась разработка первого дисплея, сделанного на основе LEP-, или PLED-технологии (рис. 2).

Специалисты из CDT сумели решить ряд проблем, применив, например, специальные методики производства упорядоченных полимеров, а также новые материалы. Чтобы добиться излучения света, был спроектирован аналог неорганического диода. Он состоял из двух слоев - полифениленвинилена (polyphenylene-vinylene, PPV) и циано-PPV (CN-PPV), размещенных между полупрозрачным электродом (оксиды индия и олова), нанесенным на подложку стекла, с одной стороны, и металлического контакта - с другой. Эти материалы - PPV и циано-PPV - выступают не только как полупроводники, но и как самоизолирующие полимеры. Как показали исследования, CN-PPV хорошо подходит для транспортировки электронов благодаря более низкому положению дна зоны проводимости. Электрические характеристики материалов подобраны так, чтобы электроны из CN-PPV и дырки из PPV собирались вдоль границы контакта слоев, где и происходит рекомбинация электронов и дырок с генерацией фотонов.

Базовые решения

На сегодняшний день OLED/PLED-технологиями занимаются несколько десятков компаний и университетов. Новые материалы представляют собой куда более сложные комбинации веществ по сравнению с тем, что было на заре этих технологий. Появились новые химические формулы базовых слоев, обогащающие добавки, отвечающие каждая за свою часть спектра - красную, синюю, зеленую. Ведь, как и в традиционных ЭЛТ-дисплеях, OLED-экран представляет собой матрицу, состоящую из комбинаций ячеек трех основных цветов - красного, синего и зеленого. В зависимости от того, какой цвет требуется получить, регулируется уровень напряжения на каждой из ячеек матрицы, и в результате смешения трех образующихся оттенков получается искомый цвет.

Итак, структура OLED-ячейки многослойна (рис. 3). Сверху OLED-панели располагается металлический катод, снизу - прозрачный анод. Между ними расположено несколько органических слоев, собственно и составляющих светодиод. Один слой служит источником дырок, второй - полупроводниковым каналом, третий слой транспортирует электроны и, наконец, в четвертом слое происходит замещение дырок электронами, которое в светоизлучающих полимерах сопровождается световым излучением.

Рис. 3. Базовая структура OLED.

Как и ЖК-экраны, OLED-дисплеи бывают активными и пассивными. Последний тип устроен как простейший двухмерный массив пикселов в виде пересекающихся строк и колонок. Каждое такое пересечение представляет собой OLED-диод. Чтобы заставить его излучать свет, управляющие сигналы подаются на соответствующую строку и колонку. Чем больше поданное напряжение, тем выше будет светимость пиксела. Напряжение требуется достаточно высокое, вдобавок подобная схема, как правило, не позволяет создавать большие экраны, состоящие более чем из миллиона пикселов.

Что касается активной матрицы, это все тот же двухмерный массив из пересекающихся колонок и линий, но на сей раз каждое из их пересечений представляет собой не только светоизлучающий элемент, или OLED-диод, но и управляющий им тонкопленочный транзистор. Управляющий сигнал посылается уже на него, а он, в свою очередь, "запоминает", какой уровень светимости требуется от ячейки и, пока не будет дана другая команда, исправно поддерживает этот уровень тока. И напряжение в этом случае требуется куда более низкое, и ячейка куда быстрее реагирует на изменение ситуации. Обычно здесь используются тонкопленочные полевые транзисторы - TFT (Thin Film Transistor) на базе поликристаллического кремния.

Благодаря партнерству CDT с корпорацией Seiko Epson произошло, пожалуй, важнейшее событие в истории развития пластиковых дисплеев. Японцы предложили использовать модифицированную струйную технологию для "печати" пикселов экрана прямо на управляющих схемах из TFT-транзисторов. Дело в том, что использование пассивноматричных управляющих схем в сочетании с относительно невысокой скоростью работы полимерных "диодов" приводит к неудовлетворительной инерционности экранов. А достоинства активноматричной технологии не удавалось реализовать из-за неприменимости фотолитографии к тончайшим полимерным пленкам.

Отклик индустрии

На промышленной выставке FPD International 2004, проходившей в Йокогаме (Япония), корпорация LG.Philips LCD совместно с LG Electronics впервые продемонстрировала самую большую в мире активноматричную дисплейную панель на базе органических светодиодов. Устройство с размером диагонали 20,1 дюйма, по заявлению представителей этих компаний, было создано с использованием технологии низкотемпературного поликристаллического кремния LTPS (Low Temperature Poly Silicon). При этом LG.Philips LCD разработала TFT-модули, применяемые в продукте, а LG Electronics предоставила процесс вакуумного испарения для органических субстанций. Вообще говоря, южнокорейские и японские производители дисплейных панелей уделяют большое внимание совершенствованию и маркетингу OLED-технологий, которые, в частности, превосходят плазменные и ЖК-дисплеи по качеству изображения.

В начале этого года корпорация Samsung Electronics (http://www.samsungelectronics.com) сообщила, что ею создан прототип крупнейшего в мире монитора по технологии OLED. Представленный Samsung 21-дюйм экран имеет разрешение WUXGA (Wide Ultra Extended Graphics Array) с яркостью 600 нит (кандел на кв. метр) и контрастность 5000:1, что делает его применимым для воспроизведения видео высокой четкости. В производственном процессе используется технология аморфного кремния (a-Si), который применяется в некоторых производствах ЖК-панелей, так что новые панели можно в принципе выпускать на существующих производственных линиях. Как утверждают в корпорации, вопрос коммерческого производства сейчас находится в стадии рассмотрения.

Успехи южнокорейской корпорации просто поражают, если учесть, что всерьез OLED-технологией она начала заниматься лишь в 2000 г., запустив так называемый i-Project, в приложении к мобильным телефонам с экранами размером в 1,5-2 дюйма. Впоследствии Samsung Electronics стала сотрудничать с Vitex Systems (http://www.vitexsys.com), известной в то время своей фирменной технологией Vacuum Polymer Technology (VPT). Корпорация начала реализовывать программу Barrier Engineering Program, целью которой была разработка методов защиты субстрата (подложки) от окисления кислородом, воздействия воды и прочих подобных факторов. Обычно в качестве оптимального материала используется стекло, которое хорошо многим, кроме, например, гибкости. Vitex же предлагала наносить непосредственно на OLED-матрицу слой из полимеров и керамической пленки, защищающий их не хуже стекла, но в то же время абсолютно гибкий. Сначала неравномерный рельеф OLED-экрана заливается тонким слоем жидкости-"мономера", поверхность которого, естественно, будет абсолютно ровной. Потом этот "мономер" полимеризуется, переходя в твердое состояние, а сверху на него наносится необходимое число защитных слоев полимеров и керамики. За счет того, что подложка доведена до абсолютно ровного состояния, защита получается весьма надежной, и все это при общей ее толщине не более 3 мкм, т. е. куда тоньше и легче, чем стекло. В настоящее время Vitex Systems разработала еще более совершенную технологию Barix.

Хотя в прошлом году японская корпорация Seiko Epson показывала прототип 40-дюйм OLED-экрана, в Samsung Electronics говорят, что их 21-дюйм образец превосходит представленный японцами, поскольку та панель по сути собиралась из четырех смежных 20-дюйм экранов. Более того, корпорация уже весной продемонстрировала собственную 40-дюйм OLED-панель на международной выставке-конференции Society of Information Display 2005 в Бостоне.

Кстати, в конце прошлого года Seiko Epson и Universal Display Corp. (UDC, http://www.universaldisplay.com) подписали соглашение о совместной разработке новой технологии - PHOLED (Phosphorescent OLED). По мнению разработчиков, дисплеи на ее основе могут быть в четыре раза эффективнее тех, что созданы на базе существующей OLED-технологии, и, кроме того, будут потреблять меньше энергии, рассеивать меньше тепла и станут более долговечными. UDC использует результаты американской научной школы, взяв за основу результаты исследований ученых из Принстона (Princeton) и Университета Южной Калифорнии (University of Southern California). Среди предложенных корпорацией разновидностей дисплеев есть оригинальный вариант с прозрачным экраном - TOLED (Transparent OLED), с увеличенным коэффициентом контрастности. Такие устройства могут найти применение в салонах автомобилей (монитор на ветровом стекле), шлемах и очках-мониторах. Еще одна конструкция предусматривает расположение субпикселов TOLED "бутербродом" - SOLED (Stacked OLED), что позволит создавать полноцветные мониторы высокого разрешения. И наконец, возможны "гибкие" экраны FOLED (Flexible OLED), а точнее говоря, экраны, выполненные на гибкой подложке, спектр применения которых может быть самым широким.

Преимущества и недостатки

Таким образом, есть все основания полагать, что под боком у ЖК-технологии развивается очень серьезный конкурент. Действительно, технологию OLED эксперты часто рассматривают как потенциальную замену не только ЖК-мониторов, но и плазменных панелей. Дело в том, что OLED-дисплеи имеют целый ряд существенных преимуществ. Они потребляют меньше энергии, не требуют дополнительной подсветки и при этом обеспечивают повышенную яркость, высокую контрастность и частоту регенерации изображения, видимого к тому же под большими углами обзора. Кроме того, OLED-устройства, согласно утверждениям сторонников этой технологии, имеют меньшее время отклика и поэтому лучше приспособлены для быстро меняющегося изображения.

Немаловажным фактором роста популярности OLED-дисплеев может стать также себестоимость массового производства, которая базируется на применении тонкопленочных технологий и стандартных литографических процессов. Такая комбинация может обеспечить низкие затраты и высокую надежность всего производственного процесса. Некоторые эксперты полагают, что при условии массового производства стоимость OLED-экранов будет ощутимо ниже, чем у ЖК-панелей. Немаловажен и тот факт, что такие мониторы работают при напряжении питания всего несколько вольт и имеют очень малую массу и толщину. Все это должно сделать технологию привлекательной для производителей электроники и плоскопанельных экранов. Однако до недавнего времени утверждалось, что уровень развития самой технологии не достиг пока точки возможности массового коммерческого производства. Исключения составляют уже устанавливаемые малые экраны в некоторых моделях сотовых телефонов, цифровых камер и наладонных компьютеров.

Из недостатков новой технологии стоит особо отметить относительно низкое "время жизни" (lifetime) излучающих полимеров. Самые большие проблемы возникли с материалами, излучающими синий свет. Сначала их время работы вообще не превышало 1000 ч, что было явно неприемлемо для практических применений. Но достигнутые на сегодняшний день успехи не могут не впечатлять. Хотя в синем спектре перспективные OLED-материалы по-прежнему остаются наименее долговечными, их срок жизни составляет уже около 10 тыс. ч. А осенью прошлого года CDT удалось получить OLED-материал с синим свечением, время жизни которого составило 40 тыс. ч.

Электролюминесцентные экраны

Менее интенсивно развивается производство плоских дисплеев, основанных на электролюминесцентной (ElectroLuminescent, EL) технологии. О том, что некоторые материалы (например, сульфид цинка) при прохождении тока обладают способностью излучать видимый свет, известно еще с 1937 г. Однако практическое применение для плоских дисплеев этот эффект нашел спустя почти 50 лет, когда появились тонкопленочные EL-материалы. По мнению некоторых специалистов, EL-дисплеи имеют ряд преимуществ перед ЖК- и даже FED-устройствами. Это касается как разрешающей способности, так и контрастности, угла обзора и даже энергопотребления.

Так, корпорации Casio Computer удалось значительно увеличить уровень яркости EL-дисплеев на основе аморфного кремния. Данное достижение позволит электролюминесцентным мониторам конкурировать в этом отношении с плазменными панелями. Улучшение яркости стало возможным в результате изменения структуры панели - между подложкой и светоизлучающим слоем введен еще один, дополнительный полимерный слой. Он позволяет предотвратить утечку тех электронов, которые в стандартных панелях не попадали на светоизлучающий слой, и таким образом повышает эффективность испускания света на 30%. В результате яркость увеличивается до 450 кд/м2 - втрое больше, чем у существующих панелей, использующих электролюминесцентную технологию. Экспериментальная модель панели повышенной яркости имела размер диагонали всего 2 дюйма, но Casio планирует к 2006-2007 финансовому году развернуть коммерческий выпуск модификаций таких дисплеев с диагональю от 30 до 40 дюймов.

Другую интересную технологию предлагает компания iFire Technology, уже привлекшая на свою сторону таких производителей, как Sanyo Electric и Dai Nippon Printing. Толстопленочные диэлектрические электролюминесцентные панели TDEL (Thick-film Dielectric ElectroLuminescent) дебютировали в мае прошлого года и сразу продемонстрировали неплохие характеристики. При диагонали в 34 дюйма и величине угла обзора 170° максимальная яркость изображения составила примерно 500 кд/м2, причем коэффициент контрастности был равен 500:1. Для сравнения скажем, что аналогичные параметры для обычных ЭЛТ-устройств составляют соответственно 150 и 300:1. По словам разработчиков, данная технология позволит создавать большие панели при ценах на 30-50% ниже по сравнению с другими технологиями. И не только большие - экономическая оправданность сохраняется при диагоналях как 5, так и 50 дюймов.

Напомним, что принцип действия электролюминесцентных панелей заключается в приложении электрического поля к многослойной структуре из двух электродов (полупрозрачного и алюминиевого) и слою диэлектрика, на который нанесен слой люминесцентного вещества (люминофора). Последний излучает свет под воздействием электромагнитного поля. Обычно слой люминофора состоит из какого-либо полупроводника, играющего роль генератора "разогретых" электронов, и излучающих центров с поглотителями, в роли которых выступают, например, атомы марганца, теллура или меди. Напряжение, необходимое для возбуждения люминесценции, столь велико, что пробивание тонкого слоя люминофора неизбежно. Поэтому обычно конструкция включает в себя два слоя диэлектрика, изолирующих люминофор от прямого контакта с электродами. Прибегнув к нанесению толстого слоя диэлектрика, сотрудникам iFire удалось увеличить надежность конструкции, что позволило масштабировать EL-технологию на дисплеи большого формата и повысить их яркость.

Автоэмиссионные FED- и SED-дисплеи

Большое внимание сегодня уделяется созданию дисплеев на базе автоэлектронной эмиссии (Field Emisson Display, FED). В отличие от ЖК-экранов, которые работают с отраженным светом, FED-панели сами генерируют свет, что роднит их с экранами на базе ЭЛТ и PDP-панелями, поскольку все они относятся к группе эмиссионных дисплеев (рис. 4). Однако в отличие от ЭЛТ, у которой всего три электронных пушки, в FED-устройствах для каждого пиксела предназначен свой электрод, благодаря чему толщина панели не превышает нескольких миллиметров. При этом каждый пиксел управляется напрямую, как и в ЖК-дисплеях с активной матрицей. Свою родословную FED-устройства ведут от разработок середины 1990-х гг., когда инженеры пытались создать по-настоящему плоский кинескоп.

Один из вариантов FED - так называемая технология SED (Surfaceconduction Electronemitter Display). Эту технологию трудно назвать новинкой, поскольку корпорация Canon (http://www.canon.com) начала работать над ней еще в 1986 г. Однако по ряду причин долгое время работы над SED не форсировались. В 1999 г. к проекту присоединилась корпорация Toshiba (http://www.toshiba.co.jp), добавив к ноу-хау Canon свой опыт в сфере производства ЭЛТ, в частности, технологию вакуумного напыления. Кроме того, Canon приобрела у компании Candescent Technologies (http://www.candescent.com), которая прошлым летом прекратила свое существование, все права на ее интеллектуальную собственность. Как известно, вышеупомянутая компания ускоренными темпами вела подготовку производства FED-устройств по собственной технологии - ThinCRT ("тонкая ЭЛТ"). По мнению ряда экспертов, решения, полученные Canon от Candescent Technologies, позволили значительно усовершенствовать ее собственную SED-технологию. Во многом благодаря этому альянс Canon и Toshiba смог представить на объединенной выставке перспективных технологий CEATEC 2004 (Combined Exhibition of Advanced Technologies), которая прошла в Японии в октябре прошлого года, первый прототип SED-дисплея. Диагональ экрана у этого устройства составляла 36 дюймов, а контрастность изображения - 8600:1. Одним из основных преимуществ данного устройства была не столько его толщина - 7 мм (толщина современного плазменного дисплея составляет несколько сантиметров), сколько сниженное энергопотребление: SED-дисплей потреблял всего 160 Вт, тогда как ЖК-дисплей с такой же диагональю экрана - 200 Вт, а PDP - 350 Вт. Как сообщалось, экспонат пользовался успехом, во всяком случае, к нему выстраивались длинные очереди.

Таким образом, изменения, внесенные в технологию, позволили разработчикам утверждать, что они научились делать SED-дисплеи дешевле, чем плазменные панели такого же размера. При этом новые экраны не менее плоские, чем ЖК, но свободны от всех их недостатков. Они обеспечивают столь же контрастное и насыщенное изображение, как хороший ЭЛТ-кинескоп, а энергии потребляют в полтора раза меньше.

В прошлом году Canon и Toshiba объявили о заключении соглашения о совместном производстве усовершенствованных плоскопанельных SED-дисплеев. Стоимость проекта составляет 1,82 млрд долл. Для его реализации было создано совместное предприятие SED Inc. Обе корпорации заявили, что начнут производство SED-дисплеев, в основном больших размеров (от 50 дюймов), в августе 2005 г. По их прогнозам, предприятие должно окупиться к 2010 г. Планируется произвести в этом году около 3 тыс. SED-дисплеев в месяц, в 2008 г. - 1,8 млн шт., а в 2010 г. - 3 млн шт. Более того, корпорация Toshiba планирует в текущем году полностью прекратить производство и продажу PDP-панелей (сначала операции будут свернуты в Японии, затем и в других регионах). Вместо "плазмы" корпорация сфокусируется на производстве SED-устройств. Ожидается, что в ближайшие несколько лет объемы продаж устройств отображения с экранами, диагональ которых превышает 40 дюймов, утроятся. По прогнозам исследовательской компании iSuppli (http://www.isuppli.com), с 7,2 млн шт. в прошлом году они возрастут к 2008 г. до 22 млн шт.

Принцип работы FED-дисплея

FED-дисплей представляет собой стеклянную пластину, на которой расположены электронные эмиттеры (катоды) - излучающие электроны элементы, аналогичные электронной пушке обычного вакуумного кинескопа. Параллельно ей расположена другая стеклянная пластина, на которую нанесено флуоресцирующее вещество. Между двумя пластинами создается высокое разрежение (вакуум). Кстати, одна из проблем, с которой сталкивались разработчики FED-панелей, состояла именно в том, что между двумя пластинами стекла, разделенными узкой щелью, должно создаваться разрежение (то есть должен быть откачан воздух). Но в этом случае пластины начинают притягиваться друг к другу, чего необходимо было избежать.

Эмиссия электронов из эмиттера за счет туннельного эффекта обеспечивается подачей потенциала на тонкую пленку, в которой прорезаны сверхтонкие (толщиной всего в несколько нанометров) щели. Часть "выбитых" электронов усиливается разностью потенциалов в зазоре между двумя пластинами и попадает на покрытую флуоресцирующим веществом пластину, вызывая его свечение. Каждый из катодов под воздействием разности потенциалов испускает электроны в строго определенную зону люминофора, равнозначную пикселу или субпикселу. В SED в качестве катода обычно используется пленка оксида палладия (считается, что это не только дешевый, но и стабильный материал), а анодом служит подложка на основе алюминия со слоем люминофора.

В отличие от ЭЛТ, где применяется от одного до трех "горячих" катодов, подобные дисплеи обладают сверхмалой толщиной, сравнимой с ЖК- и PDP-панелями, а также идеально плоской поверхностью экрана. Кроме того, используемый механизм формирования изображения исключил присущие ЭЛТ ограничения по площади экрана: теоретически возможны FED-дисплеи любого размера. Вместе с тем FED сохраняет положительные черты ЭЛТ, такие, как угол обзора 180°, небольшое время отклика (в пределах 2-3 мс) и естественная цветопередача, - показатели, к которым стремятся разработчики ЖК-дисплеев. В свою очередь, FED выгодно отличается от PDP существенно меньшим энергопотреблением и более высокой разрешающей способностью. При этом, по оценкам, стоимость производства FED в промышленных масштабах гораздо меньше, чем всех остальных популярных сегодня дисплеев. Еще один плюс SED-панели состоит в экономичности. По имеющейся информации, энергопотребление таких панелей почти наполовину меньше, чем у сравнимых с ними по размеру плазменных экранов. Но не обходится, конечно, и без минусов: технология массового производства таких панелей на первых порах не может быть дешевой.

Таким образом, конструкция FED-дисплея обеспечивает не только высокую яркость изображения и его качественную цветопередачу, ни в чем не уступающие вакуумным кинескопам, но и широкий угол обзора экрана, простоту и технологичность производства (отсутствует система развертки), а также возможность создания абсолютно плоских и тонких экранов.

Использование углеродных нанотрубок

Еще одна многообещающая технология создания плоских экранов - CNT-FED, которая использует углеродные нанотрубки CNT (Carbon NanoTubes). Еще с конца 90-х гг. в качестве катодов в FED-панелях начали использовать пучки углеродных нанотрубок, выращиваемых на подложке. Первым делом на стеклянную подложку наносится графитовый порошок с зернами размером 3-5 нм, а затем панель обрабатывается при определенных температуре и давлении. В течение нескольких минут зерна образуют волокна до 10-30 нм в сечении и до 100 нм в высоту, способные испускать электроны в вакуум под воздействием разности напряжений на катоде и аноде. Отрицательно заряженный катод образует решетку и излучает электроны через нанотрубки, которые как бы фокусируют их энергию (рис. 5).

Новая технология будет применяться при производстве плоскопанельных дисплеев и, по мнению ее разработчиков, позволит значительно улучшить их характеристики. Дело в том, что углеродные нанотрубки имеют ряд исключительных свойств: электропроводность, соизмеримая с электропроводностью меди или кремния; лучшая среди всех известных материалов теплопроводность; прочность, превосходящая сталь почти в 100 раз. К тому же для производства плоских экранов технология CNT-FED обладает всеми преимуществами органических дисплеев OLED: не требует задней подсветки, имеет малое время отклика, широкий угол обзора и высококачественную цветопередачу. Однако время жизни дисплеев на базе CNT-FED значительно больше.

Не секрет, что многие из перспективных направлений в материаловедении, нанотехнологиях, наноэлектронике, прикладной химии связываются в последнее время с фуллеренами, нанотрубками и другими похожими структурами, которые часто называют общим термином "углеродные каркасные структуры". Под этим понимают большие молекулы, состоящие исключительно из атомов углерода. Часто говорят о том, что углеродные каркасные структуры - это новая аллотропная форма углерода. Главная особенность этих молекул заключается в их каркасной форме. Они выглядят как замкнутые, пустые внутри "оболочки". Самая знаменитая из углеродных каркасных структур - это фуллерен C60. В конце 80-х - начале 90-х гг., после того как была разработана методика получения фуллеренов в достаточных количествах, было обнаружено множество других, как более легких, так и более тяжелых фуллеренов, начиная от C20 (минимально возможной структуры) до C70, C82, C96 и выше.

Однако разнообразие углеродных каркасных структур на этом не заканчивается. В 1991 г. были обнаружены длинные цилиндрические углеродные образования, получившие название нанотрубок (рис. 6). Необычного в этих структурах довольно много. Во-первых, разнообразие форм: нанотрубки могут быть большими и маленькими, однослойными и многослойными, прямыми и спиральными. Во-вторых, несмотря на кажущуюся хрупкость и даже ажурность, нанотрубки оказались на редкость прочным материалом как на растяжение, так и на изгиб. Более того, под действием механических напряжений, превышающих критические, нанотрубки также ведут себя довольно интересно: они не рвутся и не ломаются, а просто перестраиваются. Кроме того, нанотрубки демонстрируют целый спектр самых неожиданных электрических, магнитных, оптических свойств. Например, в зависимости от конкретной схемы сворачивания графитовой плоскости нанотрубки могут быть как проводниками, так и полупроводниками.

Многие эксперты полагают, что необычные электрические свойства нанотрубок сделают их одним из основных материалов в наноэлектронике. Уже сейчас созданы опытные образцы полевых транзисторов на основе одной нанотрубки: прикладывая запирающее напряжение в несколько вольт, исследователи научились изменять проводимость однослойных нанотрубок на несколько порядков. Еще одно их применение заключается в создании полупроводниковых гетероструктур, т. е. структур типа металл-полупроводник или стык двух разных полупроводников. Теперь для изготовления такой гетероструктуры не надо будет выращивать отдельно два материала и затем "сваривать" их друг с другом. Все, что требуется, - это в процессе роста нанотрубки создать в ней некий структурный дефект. Тогда одна часть нанотрубки будет металлической, а другая - полупроводниковой.

Одним из первых коммерческих применений станет добавление нанотрубок в краски или пластмассу для придания этим материалам свойств электропроводности. Это позволяет заменить в некоторых изделиях металлические детали полимерными. Создан продукт на основе нанотрубок, по существу представляющий собой проводящий полимер. Кроме того, покрытия с примесью углеродных нанотрубок могут использоваться для отвода статического электричества или поглощения сигнала радара. В ближайшие годы нанотрубки найдут применение для изготовления оптоволокна или замены традиционных транзисторов в микросхемах.

Как говорилось выше, разработано уже и несколько применений нанотрубок в компьютерной индустрии. Так, созданы и опробованы прототипы тонких плоских дисплеев, работающих на матрице из нанотрубок. Под действием напряжения, прикладываемого к одному из концов нанотрубки, с другого конца начинают испускаться электроны, которые попадают на фосфоресцирующий экран и вызывают свечение пиксела. Получающееся при этом зерно изображения может быть фантастически малым - порядка микрона.

Результаты лабораторных исследований панелей FED с нанотрубками оказались вполне стабильными (срок их службы достигает 20 тыс. ч) и настолько выгодными в производстве, что стоимость дисплеев с 30-дюйм экраном обещает быть на 30% ниже самого дешевого ЖК-монитора с такой же диагональю. Собственные программы разработки панелей на базе CNT-FED ведут сейчас многие организации. Стоит отметить, что технология очистки углеродных нанотрубок (отделение хороших трубок от плохих) и способ введения нанотрубок в другие продукты еще требуют совершенствования.

Carbon Nanotechnologies (http://www.cnanotech.com , CNI), одна из ведущих компаний, производящая углеродные нанотрубки для IBM и различных исследовательских институтов, планирует в ближайшее время расширить производство, что может способствовать началу коммерческого применения технологии. Так, CNI планирует довести производство одностенных углеродных нанотрубок до 45 кг в смену. Кроме того, компания осваивает полномасштабное коммерческое производство и в этом году должна выпускать примерно полтонны нанотрубок в смену. Еще два года назад CNI могла изготовить всего около 0,5-1 кг подобного материала в день, а обычно производила примерно килограмм в неделю. Заметим, что углеродные трубки - материал довольно дорогой: в настоящее время 1 г этого материала предлагается за 10 долл. Эксперты утверждают, что в ближайшие два-три года цена его упадет до 1 долл. Это весьма существенное снижение, если учесть, что буквально несколько лет назад за 1 г CNT просили около 500 долл.

В лаборатории корпорации Motorola (http://www.motorola.com) нашли способ выращивания нанотрубок при низких температурах - это важное достижение, так как основа, к которой они крепятся (стекло или транзисторы), нечувствительна к нагреванию. В лаборатории Motorola создали также способ прецизионного размещения отдельных нанотрубок на поверхности материала. Возможность размещать их непосредственно на подложке при контролируемых расстояниях, размерах и длине гарантирует высокое качество изображения при оптимальном уровне эмиссии электронов, яркости, чистоте цвета и разрешении плоских дисплеев.

Ученые из IBM Research (http://www.research.ibm.com) нашли новый способ заставить углеродные нанотрубки излучать свет, что может привести к дальнейшему совершенствованию оптоволоконной технологии. Кроме того, специалисты "Голубого гиганта" продемонстрировали новый процесс выращивания углеродных нанотрубок, которые можно внедрять в процессоры, что должно привести к созданию в ближайшие десятилетия гораздо более мощных компьютеров.

Корпорация NEC (http://www.nec.co.jp) создала технологию, которая позволяет стабильно выращивать углеродные нанотрубки и изготавливать транзисторы на их основе. Интересно, что транзисторы на нанотрубках обладают более чем в 10 раз большей крутизной характеристики, чем кремниевые МОП-транзисторы. В NEC считают, что смогут выпустить первые коммерческие микросхемы на базе углеродных нанотрубок уже к 2010 г. Компанией был разработан процесс вакуумного напыления CVD (Chemical Vapor Deposition) и найден катализатор, позволяющий выращивать нанотрубки на поверхности кристалла кремния. К тому же удалось научиться контролировать ориентацию нанотрубок.