Интернет

Подключение SD карты к микроконтроллеру. Работа с SD картой

Мы выводили картинку на дисплей с sd карточки, но в ней были упущены некоторые моменты, первый - подключение самой карточки, второй - была рассмотрена лишь часть функций библиотеки Petit FatFs , давайте остановимся на этих моментах подробнее.

Общение с карточкой возможно по одному из двух интерфейсов, SPI или SD .



Надо сказать, что SD интерфейс может работать в однобитном и четырёхбитном режимах.

Схема подключения карточки по SPI стандартная и выглядит следующим образом, не используемые выводы карточки нужно с помощью резистора 10К подтянуть к питанию.


Но в любительских конструкциях зачастую пренебрегают подтягивающими резисторами, упрощая схему подключения.

Надо отметить, что при подключении по SPI карточка очень требовательна к напряжению питания и небольшая просадка питающего напряжения приводит к неработоспособности карточки, это проверено на личном опыте, по поводу SD интерфейса сказать нечего, ещё не пробовал. Это всё писал к тому, что по питанию обязательно ставить конденсаторы . Что касается дросселя, он должен быть рассчитан на ток до 100мА, но ставить его необязательно.

На схемах, изображённых выше видно, что для работы карточке необходимо 3.3 вольта, соответственно, в линиях передачи данных напряжение не должно выходить за диапазон 0 – 3.3 вольт и тут возникает вопрос, что делать если МК питается от 5 вольт?
Ответ прост, надо согласовать линии передачи данных, а сделать это можно с помощью обычного резистивного делителя.


На схеме видно, что линию MISO согласовывать не надо так, как по этой линии данные передаются от карточки к МК .
На самом деле, мало кто подключает карточку напрямую к МК, гораздо удобнее подключить к МК разъём для карточки или купить шилд с разъемом и всей необходимой обвязкой.

С подключением разобрались, давайте теперь рассмотрим как пользоваться библиотекой Petit FatFs , которая предназначена для 8-битных микроконтроллеров с малым размером памяти.

Библиотека состоит из 5 файлов:
integer.h - заголовочный файл в котором описаны основные типы данных.

diskio.h - заголовочный файл в котором объявлены прототипы низкоуровневых функций для работы с диском и статусные коды, которые они возвращают.

diskio.c - в этом файле должны быть реализованы низкоуровневые функции, изначально там "заглушки".

pffсonf.h - конфигурационный файл.

pff.h - заголовочный файл в котором объявлены прототипы функций взаимодействия с файловой системой диска.

pff.c - файл содержит реализации функций для взаимодействия с файловой системой диска.

Видно, что для того чтобы библиотека заработала необходимо реализовать низкоуровневые функции. Но если речь идет о AVR или PIC, для них сайте можно скачать пример работы с библиотекой, в котором есть файл mmc , в нем уже реализованы низкоуровневые функции. Также необходимо задать конфигурацию библиотеки в файле pff.h и написать функции необходимые для работы SPI.

Функции Petit FatFs.

FRESULT pf_mount (FATFS*) - функция монтирует/демонтирует диск. Эту функцию необходимо вызывать до начала работы с диском, если вызвать функцию с нулевым указателем диск демонтируется. Функция может быть вызвана в любой момент времени.

Параметры
FATFS* fs - указатель на объект типа FATFS, описание этой структуры можно посмотреть в файле pff.h. Нам надо всего лишь объявить переменную такого типа.

Возвращаемые значения:
FR_OK (0)
FR_NOT_READY - устройство не может быть инициализировано
FR_DISK_ERR - возникла ошибка во время чтения с диска
FR_NO_FILESYSTEM - на диске нет правильного раздела FAT

FATFS fs;//объявляем объект типа FATFS //монтируем диск if (pf_mount(&fs) == FR_OK) { //диск смонтирован, работаем с ним //демонтируем диск pf_mount(NULL); } else { //не удалось смонтировать диск }

FRESULT pf_open (const char* path) - функция открывает существующий файл. После того как файл открыт с ним можно работать, то есть читать из него и записывать в него. С открытым файлом можно работать до тех пор, пока не будет открыт другой файл. Функция может быть вызвана в любой момент времени.

Параметры
const char* path - указатель на строку, указывающую путь к файлу. Путь надо указывать полностью относительно корневой директории, разделяя директории слэшем.

Возвращаемые значения:
FR_OK (0) - возвращается в случае успешного выполнения функции
FR_NO_FILE - файл не найден
FR_DISK_ERR - ошибка диска
FR_NOT_ENABLED - диск не был смонтирован

FATFS fs;//объявляем объект типа FATFS //монтируем диск if (pf_mount(&fs) == FR_OK) { //открываем файл лежащий в корневой директории if(pf_open("hello.txt") == FR_OK) { //делаем что-то } //открываем файл лежащий в папке new if(pf_open("new/hello.txt") == FR_OK) { //делаем что-то } //демонтируем диск pf_mount(NULL); } else { //не удалось смонтировать диск }

FRESULT pf_read(void* buff, WORD btr, WORD* br) - функция читает указанное количество байт из файла и сохраняет их в буфер. Если количество прочитанных байт меньше чем указано, значит был достигнут конец файла.
#define _USE_READ 1

Параметры:
void* buff - указатель на буфер, в котором сохраняются прочитанные данные
WORD btr - количество байт, которые нужно прочитать
WORD* br - указатель на переменную, в которой хранится количество прочитанных байт.

Возвращаемые значения:
FR_OK (0) - возвращается в случае успешного выполнения функции
FR_DISK_ERR - ошибка диска
FR_NOT_OPENED - файл не был открыт
FR_NOT_ENABLED - диск не был смонтирован

FATFS fs;//объявляем объект типа FATFS BYTE buff;//буфер для чтения файла WORD br; //счетчик прочитанных байт //монтируем диск if (pf_mount(&fs) == FR_OK) { //открываем файл лежащий в корневой директории if(pf_open("hello.txt") == FR_OK) { //читаем из него 10 байт pf_read(buff, 10, &br); if(br != 10) { //если br не равно 10 //значит мы достигли конца файла } } }

FRESULT pf_write(const void* buff, WORD btw, WORD* bw) - функция позволяет записывать данные в открытый файл. Для того чтобы функция работала в файле pffconf.h надо записать
#define _USE_WRITE 1

Параметры:
void* buff - указатель на буфер, который хотим записать, нулевое значение финализирует запись
WORD btw - количество байт, которые хотим записать
WORD* bw - указатель на переменную, хранящий количество байт, которые удалось записать. Анализируя, эту переменную можно узнать был ли достигнут конец файла.

Возвращаемые значения:
FR_OK (0) - возвращается в случае успешного выполнения функции
FR_DISK_ERR - ошибка диска
FR_NOT_OPENED - файл не был открыт
FR_NOT_ENABLED - диск не был смонтирован

Из-за того, что библиотека рассчитана на микроконтроллеры с малым объемом памяти, эта функция имеет ряд ограничений:

  • нельзя создавать новые файлы, а записывать можно только в существующие
  • нельзя увеличивать размер файла
  • нельзя обновить временную метку
  • операцию записи можно начать/остановить только на границе сектора
  • файловый атрибут "только для чтения" не может запретить запись

Для того чтобы понять предпоследний пункт, надо знать, что память карточки разбита на блоки(сектора) по 512 байт и запись можно начать только с начала сектора . Таким образом если мы хотим записать 1000 байт, то первый сектор запишется полностью, а во второй запишется только 488 байт, а оставшиеся 24 байта заполнятся нулями.

Для записи в открытый файл надо выполнить следующие действия:

  • установить указатель на границу сектора, если установить не на границу, то указатель будет округлен до нижней границы сектора
  • вызвать функцию записи нужное количество раз
  • финализировать запись, вызвав функцию с нулевым указателем

Для того, чтобы привести пример работы функции записи необходимо рассмотреть ещё одну функцию.

FRESULT pf_lseek(DWORD offset) - устанавливает указатель чтения/записи в открытом файле. Устанавливать указатель можно абсолютным или относительным смещением, для абсолютного смещения необходимо передать в функцию число
pf_lseek(5000);
для относительного, передать значение указателя на текущую позицию fs.fptr и величину смещения
pf_lseek(fs.fptr + 3000);
Для того чтобы функция работала в файле pffconf.h надо записать
#define _USE_LSEEK 1

Параметры:
DWORD offset - количество байт, на которые нужно сместить указатель.

Возвращаемые значения:
FR_OK (0) - возвращается в случае успешного выполнения функции
FR_DISK_ERR - ошибка диска
FR_NOT_OPENED - файл не был открыт

Записать данные в файл можно следующим образом.
FATFS fs;//объявляем объект типа FATFS BYTE buff;//буфер для чтения файла WORD br; //счетчик прочитанных байт //монтируем диск if (pf_mount(&fs) == FR_OK) { //открываем файл лежащий в корневой директории if(pf_open("hello.txt") == FR_OK) { //устанавливаем указатель на первый сектор pf_lseek(0); //записываем pf_write(buff, 10, &br); //финализируем запись pf_write(0, 0, &br); } }

Также оставляю тут кусок реально работающего кода, в котором используются все выше описанные функции.
#define F_CPU 8000000UL #define buff_size 10 #include #include #include "diskio.h" #include "pff.h" #include "spi.h" FATFS fs;//объявляем объект типа FATFS BYTE read_buff;//буфер для чтения файла BYTE write_buff = "hello word";////буфер для записи в файл UINT br; //счетчик прочитанных байт int main(void) { //монтируем диск if (pf_mount(&fs) == FR_OK) { //открываем файл лежащий в папке new if(pf_open("new/hello.txt") == FR_OK) { //устанавливаем указатель записи pf_lseek(0); //записываем pf_write(write_buff, buff_size, &br); //финализируем запись pf_write(0, 0, &br); //устанавливаем указатель чтения pf_lseek(0); //читаем то, что записали pf_read(read_buff, buff_size, &br); if(br != buff_size) { //если br не равно buff_size //значит мы достигли конца файла } } //демонтируем диск pf_mount(NULL); } while(1) { } }

FRESULT pf_opendir(DIR* dp, const char * path) - функция открывает существующую директорию и создает указатель на объект типа DIR, который будет использоваться для получения списка файлов открытой директории.
Для того чтобы функция работала в файле pffconf.h надо записать
#define _USE_DIR 1

Параметры:
DIR *dp - указатель на переменную типа DIR.

const char * path - указатель на строку, которая содержит путь к директории, директории разделяются слэшем

Возвращаемые значения:
FR_OK (0) - возвращается в случае успешного выполнения функции
FR_NO_PATH - не удалось найти путь
FR_NOT_READY - не удалось инициализировать диск
FR_DISK_ERR - ошибка диска
FR_NOT_ENABLED - диск не был смонтирован

//объявляем переменные FATFS fs; DIR dir; //монтируем диск pf_mount(&fs); //открываем директорию pf_opendir(&dir, "MY_FOLDER");

FRESULT pf_readdir(DIR* dp, FILINFO* fno) - функцию позволяет прочитать содержимое директории. Для этого нужно открыть директорию с помощью функции pf_opendir() и вызывать pf_readdir(). Каждый раз при вызове функция будет возвращать название объекта(папки/файла) лежащего в указанной директории. Когда она пройдется по всем объектам, вернет нулевую строку в элементе массива fno.fname.
Для того чтобы функция работала в файле pffconf.h надо записать
#define _USE_DIR 1

Параметры:
DIR *dp - указатель на переменную типа DIR, которая должна быть предварительно объявлена

FILINFO *fno - указатель на переменную типа FILINFO, которая должна быть предварительно объявлена.

Возвращаемые значения:
FR_OK - успешное завершение функции
FR_DISK_ERR - ошибка диска
FR_NOT_OPENED - не открыта директория

FATFS fs; FRESULT res; FILINFO fno; DIR dir; //монтируем диск pf_mount(&fs); //открываем директорию res = pf_opendir(&dir, MY_FOLDER); //читаем содержимое директории for(;;){ res = pf_readdir(&dir, &fno); //проверяем не возникло ли ошибок при чтении // и есть ли еще файлы в указанной директории if ((res != FR_OK) || (fno.fname == 0)){ break; } //выводим удобным способом fno.fname usart_sendStr(fno.name); usart_sendStr(/r); }

Ну и напоследок оставлю тут рабочий проект

SD cards are based on the older Multi Media Card (MMC) format, but most are physically slightly thicker than MMC cards. They also boast higher data transfer rates. DRM features are available but are little-used. SD cards generally measure 32 mm × 24 mm × 2.1 mm, but can be as thin as 1.4 mm, just like MMC cards.

There are different speed grades available. They are referred to with the same nx notation as CD-ROMs; a multiple of 150 kB/s. Devices with SD slots can use the thinner MMC cards, but the standard SD cards will not fit into the thinner MMC slots. MiniSD and MicroSD cards can be used directly in SD slots with an adapter. There are readers which allow SD cards to be accessed via many connectivity ports such as USB, FireWire.

Pin SD Mode SPI Mode
Name Type Description Name Type Description
1 CD/DAT3 I/O/PP Card detection / Connector data line 3 CS I Chip selection in low status
2 CMD PP Command/Response line DI I Data input
3 Vss1 S GND VSS S GND
4 Vdd S Power supply VDD S Power supply
5 CLK I Clock SCLK I Clock
6 Vss2 S GND VSS2 S GND
7 DAT0 I/O/PP Connector data line 0 DO O/PP Data output
8 DAT1 I/O/PP Connector data line 1 RSV
9 DAT2 I/O/PP Connector data line 2 RSV

SD cards interface is compatible with standard MMC card operations. All SD memory and SDIO cards are required to support the older SPI/MMC mode which supports the slightly slower four-wire serial interface (clock, serial in, serial out, chip select) that is compatible with SPI ports on many microcontrollers. Many digital cameras, digital audio players, and other portable devices probably use MMC mode exclusively. MMC mode does not provide access to the proprietary encryption features of SD cards, and the free SD documentation does not describe these features. As the SD encryption exists primarily for media producers, it is not of much use to consumers who typically use SD cards to hold unprotected data.

There are three transfer modes supported by SD: SPI mode (separate serial in and serial out), one-bit SD mode (separate command and data channels and a proprietary transfer format), and four-bit SD mode (uses extra pins plus some reassigned pins) to support four bit wide parallel transfers. Low speed cards support 0 to 400 kbit/s data rate and SPI and one-bit SD transfer modes. High speed cards support 0 to 100 Mbit/s data rate in four-bit mode and 0?25 Mbit/s in SPI and one-bit SD modes.

SD cards security features includes:

  • Copyright protection mechanism with the SDMI standard (Secure Digital Music Initiative)
  • Integrated CPRM file protection and encryption system (CPRM is a Content Protection for Recordable Media)
  • AndReas говорит:

    Собрать адаптер Memory Stick своими руками не составляет особого труда при знании назначения функциональных выводов той или иной карты памяти. Обычно зовут распиновкой карты памяти или, например, микросхемы, чипа и т.п. Вообще технология проста. Вырезается макет карты памяти MMC (MultiMedia Card) из текстолита. На макете вырезаются 7 дорожек (MMC имеет 7 выводов). Затем, в соответствии с приведенной на рисунке ниже распиновкой, дорожки припаиваются к выводам карты памяти SD (имеет 9 выводов, из которых 2 не используются), microSD (имеет 8 выводов, из которых тоже не используются 2, но обратите внимание, что у карты памяти microSD нет вывода Vcc) или microM2 (распиновка microM2 в смежной теме Адаптер Memory Stick Micro M2). Вот и всё. Адаптер Memory Stick готов.

    P.S. У нас в наличии имеются карты памяти MMC на 1 и 2 Гб. Стоимость, соответственно, 285 и 360 руб. Доставка включена в указанную цену.

    Также можно дешево купить следующие типоразмеры карт памяти:
    - Memory Stick и Memory Stick M2;
    - Secure Digital (SD);
    - Mini SD;
    - Micro SD (TF);
    - Compact Flash;
    - XD;
    - USB Flash Drives различных исполнений и емкости.
    Например, такие:

  • slava говорит:

    да кстати я неочень селен в етих написях. немогби ты на том ресунке провисти дорожки от MicroCD До MMC буду очень признателен.

  • AndReas говорит:

    Вот так будет выглядеть адаптер miсroSD to MMC:

  • slava говорит:
  • Обновлено18.12.15. Всем привет. Сегодня мы продолжим разработку контроллера сбора данных, а именно сохранение информации непосредственно на карту SD . В прошлой статье была налажена работа термометра. Теперь эту информацию по времени, при подключении в дальнейшем часов реального времени(статья №29 ), мы будем заносить на карту памяти, получив своеобразную базу данных. А также в дальнейшем перенесем эту информацию на ПК (статья №42), в базу данных под управлением MySQL (статья №48), через небольшое приложение на Java (статья №44). Но сперва разберемся что такое SD – карта и как с ней работать. Начнем с краткого обзора истории. Предшественником Flash-памяти является одна из энергонезависимых видов памяти , типа , которая зарекомендовала себя и используется в микроконтроллерах. Flash-память возникла в ходе потребности увеличения емкости и изменения технологии стирания (в случае с памятью EPROM). Поэтому в 1984 году инженер компании Toshiba Фудзио Масуокой изменил технологию стирания, что в свою очередь решил недостатки предшественников Flash-памяти. Хочется добавить, что далее данная память начала делится по внутреннему устройству соединения ячеек в массив и алгоритмами чтения-записи – это NOR- и NAND-технология. А также различие по количеству хранимых битов в элементарной ячейке. Это SLC-устройства (single-levelcell), т.е. однобитовые ячейки различают только два уровня заряда на плавающем затворе. И MLC- устройства (multi–levelcell) — многобитовые ячейки различают больше уровней заряда. Второй тип приборов дешевле и более ёмкий, чем SLC-приборы, однако с большим временем доступа и меньшим максимальным количеством перезаписей (около 10 тыс. и 100 тыс. — SLC).

    Вообще устройства технологии NOR — это двумерная матрица проводников, что позволяет получить более быстрый доступ к каждой ячейки памяти, но при этом площадь ячейки считается большой, поэтому данная технология используется для памяти программ микропроцессоров и для хранения небольших вспомогательных данных, сюда же можно включить и специализированные микросхемы начальной загрузки компьютеров
    (POST и BIOS), процессоров ЦОС и программируемой логики.Типовые объёмы - от 1 кбайта до 1 Мбайта.
    Второй тип устройства — NAND-технология — трехмерный массив имеет малую площадь ячейки, но относительно длительный доступ сразу к большой группе ячеек. Используется для больших объемов памяти. Вот с этой памятью мы и будем работать.
    Но перед этим хочется сказать об недостатке. Как и у всего есть свой срок использования, так и у памяти есть ресурс износа. Производители в гонке за емкостью и лидерством на рынке, всегда упускают такой показатель как качество, т.к. он не совместим с высокой ценой. Так возвращаясь к износу хочется отметить что срок хранения информации при использовании MLC-устройств составляет примерно 5 лет, что связанно с накоплением необратимых изменений при изменении заряда. Если брать память NAND c SLC-устройства, то они являются более качественными, и соответственно дорогими. Стоит отметить что срок хранения информации очень во многом зависит от температуры, гамма-радиации и частиц высокой энергии.
    Выше было сказано, что недостаток карты это ограниченное количество циклов перезаписей. Когда мы будем использовать файловую систему для управления файлами, то должны знать что такие системы записывают данные в одно место, естественно расходую ресурс выделенной области в итоге вывода ее из строя и соответственно уменьшая емкость. Для этого типа памяти используется NAND-контроллер, который должен равномерно распределять износ. Однако для удешевления устройств контроллер может и не использоваться, а его работу будет выполнять программный NAND-драйвер в операционной системе. После этого открытия, многие компании занялись разработкой своих стандартов портативных карт.

    Далее перейдем непосредственно к рассмотрению карты.
    Secure Digital Memory Card (SD) - формат карт памяти, разработанный для использования в основном в портативных устройствах. Чтобы разобраться в ее работе мы будем использовать спецификацию, которая описывает данный стандарт и называется SD Specifications ver3.01.
    Первое что нам необходимо, так это разобраться как работать с этой картой, как подключить и прочее. Сначала выберем карту. Для экспериментов я взял microSD емкостью 2Гб, стандарт емкости SDSC. Шина карты может работать по двум протоколам SD и SPI. Хочется отметить что данная карта это своего рода модификация карты MMC, где (в карте SD) основное внимание было уделено системе безопасности. Поэтому алгоритм работы по протоколу SPI такой же, ну и конечно же они односторонне совместимы. Т.е мы можем в слот SD карты вставить MMC, но не наоборот.

    На рисунке ниже представлена схема подключения карты SD по протоколу SPI .
    Данный интерфейс позволяет обмениваться данными на высокой скорости, задействовав при этом минимальное количество выводов микроконтроллера, которые оснащены модулем SPI. С этого момента начнем использовать спецификацию. Первое что нас интересует- выбор режима. Разберемся в тонкостях на рис. ниже из раздела 6.4.1.1 представлена диаграмма напряжения питания и последовательность посылки команды. Здесь четко видно что после включения карты необходимо выждать несколько миллисекунд (1мс + от 0.1 до 35 мс(нарастание)) на стабилизацию. В течении этого времени на CS, MOSI линии должна быть подана 1. Далее происходит задержка инициализации максимум 1 мс, при подаче на вход CLK 74 импульсов (тактов), после чего должна идти команда CMD0. Перейдем к главе 7 где четко описана последовательность действий.

    Диаграмма напряжения питания

    SPI протокол выбирается после включения питания и подачи команды сброса CMD0. Сама по себе карта SD работает в режиме SD. Вход в режим осуществляется если сигнал SC при подаче команды CMD0 будет 0. При переходе в режим SPI карта ответит форматом R1 (рисунок ниже). Формат ответа представляет собой байт (зависит от команды см. таблицу 7.3 в спецификации) с флагами определяющие состояние карты. Правильные ответы для нас это будет 1 (в случае команды CMD0) и 0 во всех других случаях.
    1-й бит – режим ожидания
    2-й – ошибка стирания
    3- й – неизвестная команда
    4-й – ошибка команды
    5-й – ошибка в последовательности стирания
    6-й –ошибка адреса
    7-й – ошибка аргуента

    В процессе сброса, карта должна ответить 0×01, что соответствует первому биту.

    В спецификации есть четкая последовательность инициализации для SPI. Для чего используется команда CMD8 для проверки рабочего состояния карты, где происходит довольно не простой алгоритм проверки. Далее команда CMD58 для определения типа карты SDSD или SDHC и SDXC. А также команда CMD41 для запуска и проверки инициализации. Довольно не простой процесс инициализации с проверками, но я думаю что для простой записи данных можно использовать более упрощенный процесс. В разделе 7.2.7. говорится, что в режиме ожидания единственно допустимые команды для карточки CMD41, CMD8, CMD58, CMD59 , а также для карт (толстых 2.1мм) памяти SD CMD1, который идентичен команде CMD41. В стандарте эта команда считается запрещенной для инициализации, и используется исключительно для различия карт 1,4мм и 2,1мм.
    Пойдем более простым путем и используем команду CMD1. Все выше описанное отобразим в коде в функции инициализации, но перед этим рассмотрим формат команды. Каждая команда или блок данных состоят из восьми битных байтов, которые выравниваются по сигналу CLK. Т.е. каждая команда выравнивается по границе 8 тактов. Сообщения SPI состоят из команды, ответа и данных. Вся связь контролируется микроконтроллером. Все команды имеют длину 6 байт. Передача начинается с первого левого бита.

    На рисунке ниже представлен формат команды.


    Старт бит – с 0 начинается любая команда. Передаваемый бит – тоже всегда равна 1.
    Индекс – непосредственно передаваемая команда.
    Аргумент- для каждой команды аргумент указан в таблице спецификации.
    CRC – проверка избыточности кода. По умолчанию в режиме SPI она отключена. Поэтому мы ее используем только для команды CMD0, которая посылается до входа в режим и имеет значение CRC 0×95.
    Стоп бит - конец передаваемой команды.
    Что ж приступим к написанию кода.
    Начнем с необходимых 2-х функций: передача и прием байта.
    1. Передача байта карте.
    void trans_byte_sd (unsigned char data)// передаем массив битов
    {
    for (unsigned char i=0;i<8;i++) //Перебираем байт
    {
    if ((data&0×80)==0×00) //Если старший бит = 0
    PORTB&=~_BV (PB3); //Выставить MOSI (DI) -0
    else
    PORTB|=_BV (PB3); //1
    data=data<<1; // сдвиг влево
    PORTB|=_BV (PB5); //Импульс или строб
    asm («nop»); //Пауза в 1 такт
    PORTB&=~_BV (PB5);
    }
    }
    2. Прием байта микроконтроллером.
    unsigned char receive_byte_sd (void) // Возвращаем ответ
    {
    unsigned char data = 0; // инициализируем массив
    for (unsigned char i=0; i<8; i++)
    {
    PORTB|=_BV (PB5); //Фронт импульса
    data=data<<1; // Сдвигаем влево
    if ((PINB&_BV (PB4))!=0×00) // Если состояние пина 1
    data=data|0×01;
    PORTB&=~_BV (PB5); //0
    asm («nop»);
    }
    return data; // Возвращаем ответ
    }

    Из выше описанных, основных, функций начнем писать дальнейший код. Далее пропишем функцию передачи команды. Здесь хочется обратить внимания, на то, что Вы можете передавать все 5-ть аргументов: непосредственно саму команду и 4-аргумента отвечающих за адрес ячеек памяти самой карты. Что касается 6-го байта, то CRC при входе в режим SPI отключается (по умолчанию) и значение постоянно равно 0×95, которое используется только для CMD0, когда карта не в режиме. Включить проверку кода можно командой CMD58. Для экспериментов я передаю два аргумента.

    3.Передача команды.
    unsigned char comand_sd (char CMD, char arg) /*передаем команду и адрес к которому обращаемся и возвращаем ответ*/
    {
    long int i=0; // переменная для счетчика
    unsigned char r1; // ответ карты
    trans_byte_sd (CMD); // команда
    trans_byte_sd (0×00);
    trans_byte_sd (0×00);
    trans_byte_sd (arg); // передача адреса
    trans_byte_sd (0×00);
    trans_byte_sd (0×95); // Передача CRC
    /* После передачи команды ждем ответа формата R1.Каждой команде соответствует свой ответ*/
    /* Цикл для ожидания получения ответа за определенное время*/
    do
    {
    r1=receive_byte_sd ();
    i++;
    }while (((r1&0×80)!=0×00)&&(i<0xffff)); /* Как только старший бит байта не равен 0 и i не превышает 65 535 тактов*/
    return r1; // Возвращаем ответ
    }
    4. И нициализация карты.

    Теперь мы можем прописать инициализацию карты. Кратко программа описывается следующим образом: первое что необходимо, так это перевести карту в режим SPI. При подаче питания карта устанавливается в режим SD. Для выбора режима SPI на вход CS подается логический 0, в это же время подается команда сброса CMD0 и инициализации CMD1 на вход карты MOSI. Обратим внимание что команда начинается от шестнадцатеричного 0×40, к которому необходимо прибавить номер команды CMD в шестнадцатеричном виде.

    unsigned char spi_card_init (void) // функция возвращает ответ
    {
    unsigned char r1; // переменная для приема ответа
    long int i =0; // переменная для счетчика
    _delay_ms (10); // небольшая задержка для стабилизации напряж.
    PORTB|=_BV (PB1); //CS, устанавливаем 1, при подаче тактов
    PORTB|=_BV (PB3); //линия подачи команд — 1 MOSI (DI)
    for (unsigned char i=0; i<80;i++) // посылаем более 74 импульса
    {
    PORTB|=_BV (PB5); //CLK — 1
    asm («nop»); //задержка в один такт
    PORTB&=~_BV (PB5); //CLK — 0
    }
    PORTB&=~_BV (PB1); /* условие для входа в режим SPI линия CS должна быть равна 0 */
    r1=comand_sd (0×40,0×00); // CMD0=0×40, адрес без разницы
    if (r1!=0×01) return 4; //коды ошибок можете ставить любые
    trans_byte_sd (0xff); /* посылаем строб, своеобразная пауза перед приемом ответа */
    do // цикл приема ответа от карты
    {
    r1=comand_sd (0×41,0×00); /* посылаем команду инициализации */
    trans_byte_sd (0xff); // пауза
    i++; // счетчик
    }while ((r1!= 0)&&(i<65535)); /*пока не получен ответ 0 и количество циклов не превышает 0xffff */
    if (i>=0xffff) return 5; /* возвращаем ошибку если превысило время опроса */
    return 0;//Возвращаем 0 в случае успешной инициализации
    }

    Следующий важный момент, в спецификации пишется, что информация передается блоками, по 512 бит, причем если карта SDSC как в нашем случае, то длину блока можн0 установить от 1 до 512 бит командой CMD16. По умолчанию 512 бит. Далее опишем две функции приема и передачи блоков. В спецификации даны блок-диаграммы, опираясь на которые мы напишем код.

    Передача блока информации на карту.

    За передачу ЕДИНСТВЕННОГО блока отвечает команда CMD24. После подачи команды, ждем ответ После чего следует стартовый байт, который подготавливает контроллер карты к приему информации, по окончанию карта отвечает байтом о состоянии передачи, который описан в главе 7.3.3.1. Т.е. правильный ответ должен быть= 5. Также ждем освобождения шины для дальнейшей передачи.

    Байт отзыва о состоянии передачи.

    В разделе 7.3.3.2 описывается формат передаваемого блока
    unsigned char receive_block_sd (char* block, char arg) /* передаем массив для записи данных и адрес к которому обращаемся*/
    {
    long int i = 0;
    unsigned char r1;
    r1=comand_sd (0X51,arg); //CMD17
    if (r1!=0×00) return 5; //Выйти, если ответ не 0×00
    trans_byte_sd (0xff);
    do //Ждем начала пакета данных
    {
    r1=receive_byte_sd ();
    i++;
    }while ((r1!= 0xfe)&&(i<65535));
    if (i>=0xffff) return 5;
    for (int i=0;i<512;i=i+1) //прием данных
    block[i] = receive_byte_sd ();
    receive_byte_sd (); //байт CRC
    receive_byte_sd (); //байт CRC
    return 0;
    }

    Перед тем как использовать программу, рассмотрим аппаратную часть. Как мы говорили, выше, что карта совместима с микроконтроллером в режиме SPI. Отметим следующие нюансы работы с картой:
    1. Сопряжение логических уровней, необходимо при разном напряжении питания SD-карты и микроконтроллера AVR. Можно использовать резистивный делитель напряжения, который является линейным,т.е. напряжение на выходе зависит от напряжения на входе. А можно параллельный параметрический стабилизатор напряжения на стабилитроне, тоже что и первый вариант,только в нижнем плече используется стабилитрон, который является нелинейным делителем, и следит за опорным напряжением за счет своих свойств при повышении входного напряжения уменьшать внутреннее сопротивление,и наоборот.
    Я использовал второй вариант. В схеме ниже на сигнальной линии сопротивления являются балластными(токоограничители), на вход делителя поступает напряжение 4,5 – 5 В, а выходное снимается с нижнего плеча делителя. Токоограничители необходимы для защиты карты и другой периферии при сбоях микроконтроллера. При хорошо отлаженном устройстве в них нет необходимости.

    Заметьте, что линия MISO не нуждается в согласовании, т.к. работает только в одну сторону от карты к микроконтроллеру.
    2. Второй момент, я не использую проверку наличия карты и защиты записи. У кого то есть эти контакты в слотах, у кого то нет.
    3. Последний момент- питание. Либо ВЫ питаете 3.3 вольта всю схему, включительно с микроконтроллером, либо ставите делитель на вход схемы, не очень надежно. Либо стабилизатор 3.3 вольта, как я и сделал на микросхеме LP2980 . Важным моментом здесь является электролитический (танталовый) конденсатор, который защищает микроконтроллер от сброса при просадках напряжения.
    Ниже представлена программа и результат. Как всегда, я стараюсь использовать одну программу постоянно ее изменяя. Данный код взят из статьи №5 (семисегментный индикатор).

    #include
    #include
    #include
    #include
    //макросы для работы с индикатором
    #define a 128
    #define b 32
    #define c 8
    #define d 2
    #define e 1
    #define f 64
    #define g 16
    #define dp 4

    // Переменные

    char block ={}; //буфер записи/чтения данных на карту
    short unsigned int j, k = 0; //в макросе прерывания
    unsigned char Slot; // Массив чисел для отображения на индикаторе

    //Объявляем функции

    void trans_byte_sd (unsigned char data); // функция передачи байта
    unsigned char receive_byte_sd (void); //Функция приема байта
    unsigned char comand_sd (char,char); // функция передачи команды
    unsigned char spi_card_init (void); //Функция инициализации карты памяти
    unsigned char receive_block_sd (char* block, char arg); //Функция приема блока
    unsigned char trans_block_sd (char* block, char arg); //Функция передачи блока
    // Инициализации индикатора
    void Slot_init ()
    {…………………….};
    // Переменные для отображения цифр
    char Elem1, Elem2, Elem3;
    // Вывод на индикатор
    void Display (float i)
    { …………………………... }
    int main (void) //начало основой программы
    {
    DDRB = 0x2A; //0010 1010 – PB1, PB3, PB5
    DDRD = 0xff; //все выводы порта — выходы
    PORTD = 0×00; //устанавливаем 0
    PORTB |= 0хdb; //1101 1011 (PB0,1,3,4,6,7)
    Slot_init ();
    sei (); // либо SREG |= (1 << 7); разрешить общее прерывание
    //инициализация таймера Т0
    TIMSK = (1</*Флаг разрешения по переполнению таймера счетчика Т0*/
    TCCR0 = (0< //1000000/8 = 125000
    unsigned char temp;
    int i;
    for (i=0;i<512;i=i+1)
    block[i]= i; //записываем в буфер
    spi_card_init (); //инициализация
    trans_block_sd (block,0×04); //отправляем данные карте
    //Обнуляем буфер
    for (int i=0;i<512;i=i+1)
    block[i]=0;
    // Считаем данные с карты
    receive_block_sd (block, 0×04); ; //Функция приема байта
    for (int i=0;i<512;i=i+1)
    {
    char otv;
    otv = block[i];
    Display (otv);
    _delay_ms (100);
    }
    //Запишем по адресу в память 0
    for (int i=0;i<512;i=i+1)
    block[i]=0;
    unsigned char comand_sd (char,0×00); //функция передачи команды
    trans_block_sd (block,0×04); //отправляем данные карте
    }
    //Вывод на индикатор
    ISR (TIMER0_OVF_vect)
    { ……………. }

    Важный момент — это таймауты. Важно следить за временем чтения записи и стирании карты, так как может зависнуть микроконтроллер в режиме ожидания ответа карты. В спецификации четко описаны таймауты карты. Простой карты длится 5 мс, после чего переходит в энергосберегающий режим, в котором допустимы следующие команды CMD0, CMD1, CMD41 и CMD58. Поэтому при превышении лимита простоя передаем CMD1, ответ и дальше работаем с картой.
    Внизу представлено два скриншота из программы WinHex , с помощью которой мы можем посмотреть содержимое ячеек памяти. Программа работает следующим образом: Записываем данные в буфер, оправляем карте, обнуляем буфер, считываем данные с карты в буфер и выводим на дисплей тем самым убеждаемся в передачи данных карте. Смотрим содержимое карты, обнуляем буфер, записываем 0 в карту и опять открываем содержимое карты, тем самым убеждаемся в работоспособности программы и схемы. Как всегда незабываем о мелочах, таких как не допайка, не большие трещенки в дорожках и др., что может забрать львинную долю времени. Поэтому если есть под руками осциллограф, то непременно используйте его для наладки. В статье №24 я привел небольшой пример диагностики карты на всех этапах ее работы. мы познакомимся с датчиком влажности и температуры DHT11. После чего начнем записывать данные (температуру и влажность) в текстовый файл, своеобразную базу данных. Пока на этом все. Всем пока.

    Всем доброго дня! Сегодня мы поговорим о подключении карты памяти SD к микроконтроллеру STM32.

    Казалось бы, памяти полно у контроллеров STM32F10x, зачем там еще дополнительная, но это впечатление обманчиво) Вот, например, надо нам на дисплей вывести пару-тройку разных изображений – формат 320*240 – то есть 76800 пикселей, каждому из которых соответствует целых 2 байта. Вот и получаем около 150 кБ на одну картинку. А это немало по меркам микроконтроллера, и не факт, что две разные картинки удастся запихать в его Flash память. Или надо нам хранить большие объемы информации, данные с какого-нибудь датчика, к примеру. Да еще так, чтобы эти данные были доступны и после отключения питания. Вот тут то нам и пригодится внешняя память. И отличным решением будет SD карта памяти или MMC. К слову в этой статье мы будем проводить опыты над картой micro SD .

    Для начала пара слов о самой карте памяти, точнее о ее распиновке. Выглядит все это дело следующим образом:

    Итак, что тут у нас? Ну сразу видно, что выводов у нее целых восемь штук. Назначение выводов следующее (слева направо):


    Колонка SPI Mode нам намекает на то, что взаимодействует с микроконтроллером при помощи интерфейса SPI. НО! Мы пойдем по другому пути 😉 Все дело в том, что STM32 имеют на своем борту готовый периферийный модуль для работы именно с картами памяти, и называется он SDIO.

    Вообще взаимодействие с картами памяти заключается в передаче им определенных команд. Некоторые команды требует наличия аргумента, некоторые нет. Команды можно найти в официальной документации на конкретную карту. Так вот встроенный модуль SDIO дает возможность значительно упростить процесс передачи команд, да и вообще процесс работы с внешними картами памяти. Например, вот регистр SDIO_CMD – туда мы просто напросто записываем код команды, которую хотим передать карте. Или вот статусный регистр SDIO_STA – там целых 24 флага на каждый чих, то есть для большого количества событий.

    Кстати STM радует еще и добротной документацией на все это дело. Вот, к примеру, подробное описание инициализации для карты памяти SD (аналогично все описано для других типов карт):

    Ну, собственно, пора перейти к практическому примерчику. Поковыряем-ка Standard Peripheral Library.

    В файле stm32f10x_sdio.h по традиции находим структуры для всевозможной настройки – то есть для выбора источника тактового сигнала, частоты контроллера SDIO, настройки количества передаваемых байт. Там все так щедро откомментировано, что даже не хочется отдельно это повторять)) Просто смотрите:

    typedef struct { uint32_t SDIO_ClockEdge; /* Specifies the clock transition on which the bit capture is made. This parameter can be a value of @ref SDIO_Clock_Edge */ uint32_t SDIO_ClockBypass; /* Specifies whether the SDIO Clock divider bypass is enabled or disabled. This parameter can be a value of @ref SDIO_Clock_Bypass */ uint32_t SDIO_ClockPowerSave; /* Specifies whether SDIO Clock output is enabled or disabled when the bus is idle. This parameter can be a value of @ref SDIO_Clock_Power_Save */ uint32_t SDIO_BusWide; /* Specifies the SDIO bus width. This parameter can be a value of @ref SDIO_Bus_Wide */ uint32_t SDIO_HardwareFlowControl; /* Specifies whether the SDIO hardware flow control is enabled or disabled. This parameter can be a value of @ref SDIO_Hardware_Flow_Control */ uint8_t SDIO_ClockDiv; /* Specifies the clock frequency of the SDIO controller. This parameter can be a value between 0x00 and 0xFF. */ } SDIO_InitTypeDef; typedef struct { uint32_t SDIO_Argument; /* Specifies the SDIO command argument which is sent to a card as part of a command message. If a command contains an argument, it must be loaded into this register before writing the command to the command register */ uint32_t SDIO_CmdIndex; /* Specifies the SDIO command index. It must be lower than 0x40. */ uint32_t SDIO_Response; /* Specifies the SDIO response type. This parameter can be a value of @ref SDIO_Response_Type */ uint32_t SDIO_Wait; /* Specifies whether SDIO wait-for-interrupt request is enabled or disabled. This parameter can be a value of @ref SDIO_Wait_Interrupt_State */ uint32_t SDIO_CPSM; /* Specifies whether SDIO Command path state machine (CPSM) is enabled or disabled. This parameter can be a value of @ref SDIO_CPSM_State */ } SDIO_CmdInitTypeDef; typedef struct { uint32_t SDIO_DataTimeOut; /* Specifies the data timeout period in card bus clock periods. */ uint32_t SDIO_DataLength; /* Specifies the number of data bytes to be transferred. */ uint32_t SDIO_DataBlockSize; /* Specifies the data block size for block transfer. This parameter can be a value of @ref SDIO_Data_Block_Size */ uint32_t SDIO_TransferDir; /* Specifies the data transfer direction, whether the transfer is a read or write. This parameter can be a value of @ref SDIO_Transfer_Direction */ uint32_t SDIO_TransferMode; /* Specifies whether data transfer is in stream or block mode. This parameter can be a value of @ref SDIO_Transfer_Type */ uint32_t SDIO_DPSM; /* Specifies whether SDIO Data path state machine (DPSM) is enabled or disabled. This parameter can be a value of @ref SDIO_DPSM_State */ } SDIO_DataInitTypeDef;

    Отметим как в SPL реализована передача команд карте памяти. Для этих целей отведена отдельная структура SDIO_CmdInitTypeDef. В поле SDIO_CmdIndex вводим код команды, в поле SDIO_Argument – аргумент команды, также заполняем остальные поля. Осталось как то эти данные запихать в карту micro SD 😉 А для этого нам приготовили функцию:

    SDIO_SendCommand (SDIO_CmdInitTypeDef *SDIO_CmdInitStruct)

    В качестве аргумента передаем ей как раз таки созданную нами структуру. Для записи данных есть функция – SDIO_WriteData(uint32_t Data) . После вызова этой функции данные окажутся в специально предназначенном для этого регистре – SDIO_FIFO.

    Вот так вот осуществляется работа с модулем SDIO в STM32F10x)

    Теперь перейдем к практике наконец-то. Я снова буду работать с платой Mini STM32, поскольку добрые китайцы озадачились установкой на нее слота для карты памяти micro SD. Вот схема подключения разъема для карты к микроконтроллеру:

    Для написания программы воспользуемся готовым примером для Keil’а – стащим оттуда два файла, в которых реализовано что-то вроде драйвера для работы с картами – это файлы sdcard.c и sdcard.h. Создаем новый проект, цепляем туда эти файлы, а кроме того, естественно, файлы CMSIS и SPL. Вот готовый проект, в который все уже добавлено – остается только написать код функции main())

    В файле sdcard.c реализованы всевозможные функции для работы с картой памяти, нам теперь остается их только использовать 😉 Пишем код! Для примера запишем на micro SD 512 байт тестовых данных, а затем попробуем их считать:

    // Цепляем нужные файлы #include "stm32f10x.h" #include "sdcard.h" /*******************************************************************/ // Массивы входных и выходных данных и переменная для хранения данных // о нашей карте uint8_t writeBuffer[ 512 ] ; uint8_t readBuffer[ 512 ] ; SD_CardInfo SDCardInfo; /*******************************************************************/ int main() { // Тестовые данные для записи for (uint16_t i = 0 ; i < 512 ; i++ ) { writeBuffer[ i] = i % 256 ; readBuffer[ i] = 0 ; } // Иницилизация карты SD_Init() ; // Получаем информацию о карте SD_GetCardInfo(& SDCardInfo) ; // Выбор карты и настройка режима работы SD_SelectDeselect((uint32_t ) (SDCardInfo.RCA << 16 ) ) ; SD_SetDeviceMode(SD_POLLING_MODE) ; // И вот наконец то запись и чтение SD_WriteBlock(0x00 , writeBuffer, 512 ) ; SD_ReadBlock(0x00 , readBuffer, 512 ) ; while (1 ) { } } /*******************************************************************/

    Обратите внимание, что SD карта поддерживает запись блоками по 512 байт.

    Если мы запустим программу под отладчиком, то увидим, что считанные данные соответствуют записанным =) Так что эксперимент можем считать удавшимся. На этом на сегодня заканчиваем, до скорых встреч!